• Title/Summary/Keyword: Statistical moment

Search Result 315, Processing Time 0.025 seconds

Length-biased Rayleigh distribution: reliability analysis, estimation of the parameter, and applications

  • Kayid, M.;Alshingiti, Arwa M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.27-39
    • /
    • 2013
  • In this article, a new model based on the Rayleigh distribution is introduced. This model is useful and practical in physics, reliability, and life testing. The statistical and reliability properties of this model are presented, including moments, the hazard rate, the reversed hazard rate, and mean residual life functions, among others. In addition, it is shown that the distributions of the new model are ordered regarding the strongest likelihood ratio ordering. Four estimating methods, namely, method of moment, maximum likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used to estimate the parameters of this model. Simulation is used to calculate the estimates and to study their properties. Finally, the appropriateness of this model for real data sets is shown by using the chi-square goodness of fit test and the Kolmogorov-Smirnov statistic.

  • PDF

A New Approach to Fingerprint Detection Using a Combination of Minutiae Points and Invariant Moments Parameters

  • Basak, Sarnali;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.421-436
    • /
    • 2012
  • Different types of fingerprint detection algorithms that are based on extraction of minutiae points are prevalent in recent literature. In this paper, we propose a new algorithm to locate the virtual core point/centroid of an image. The Euclidean distance between the virtual core point and the minutiae points is taken as a random variable. The mean, variance, skewness, and kurtosis of the random variable are taken as the statistical parameters of the image to observe the similarities or dissimilarities among fingerprints from the same or different persons. Finally, we verified our observations with a moment parameter-based analysis of some previous works.

STATISTICAL PROPERTIES OF GRAVITATIONAL LENSING IN COSMOLOGICAL MODELS WITH COSMOLOGICAL CONSTANT

  • LEE HYUN-A;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.103-117
    • /
    • 1994
  • To extend the work of Gott, Park, and Lee (1989), statistical properties of gravitational lensing in a wide variety of cosmological models involving non-zero cosmological constant is investigated, using the redshifts of both lens and source and observed angular separation of images for gravitational lens systems. We assume singular isothermal sphere as lensing galaxy in homogenous and isotropic Friedmann­Lemaitre-Robertson- Walker universe, Schechter luminosity function, standard angular diameter distance formula and other galaxy parameters used in Fukugita and Turner (1991). To find the most adequate flat cosmological model and put a limit on the value of dimensionless cosmological constant $\lambda_0$, the mean value of the angular separation of images, probability distribution of angular separation and cumulative probability are calculated for given source and lens redshifts and compared with the observed values through several statistical methods. When there is no angular selection effect, models with highest value of $\lambda_0$ is preferred generally. When the angular selection effects are considered, the preferred model depends on the shape of the selection functions and statistical methods; yet, models with large $\lambda_0$ are preferred in general. However, the present data can not rule out any of the flat universe models with enough confidence. This approach can potentially select out best model. But at the moment, we need more data.

  • PDF

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.

A defect inspection method for the LCD ploarizer film using statistical moment of histogram (히스토그램의 통계적 모멘트를 이용한 편광필름 결함 검출 방법)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1760-1761
    • /
    • 2007
  • 액정 디스플레이(LCD)의 핵심 재료인 편광필름은 제조 과정이나 운반 과정에서 실오라기 같은 이물 및 찍힘 등의 결함이 발생하며 이를 사람이 육안으로 검사하고 있다. 본 논문에서는 이런 편광필름의 결함을 자동으로 검출하기위한 방법으로 히스토그램의 통계적 모멘트를 사용하여 주변 밝기에 따라 검사 영역의 밝기의 기울기를 구하고, 이를 통해 결함의 유무를 판단하는 편광필름 검사 방법을 제안한다.

  • PDF

Multi-response Designs Minimizing Model Inadequacies

  • Bae, Whasoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.799-808
    • /
    • 2002
  • This paper aims at selecting the multi-response design with γ responses minimizing the bias error caused by fitting inadequate models to responses, where the first order models are fitted to Ρ responses fearing the quadratic bias, while to other γ- Ρ responses, the quadratic models are fitted fearing the cubic biases in the cuboidal region of interest. Under the assumption of symmetric design, by minimizing the criterion which represents the amount of error caused by fitting inadequate models, the optimum design was found to be the one having the design moments of second order and the fourth order as 1/3 and l/5, respectively. Examples of the design meeting the required conditions are given for illustration.

Transmuted new generalized Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert;Hudson, Irene Lena
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.363-383
    • /
    • 2016
  • The Weibull family of lifetime distributions play a fundamental role in reliability engineering and life testing problems. This paper investigates the potential usefulness of transmuted new generalized Weibull (TNGW) distribution for modeling lifetime data. This distribution is an important competitive model that contains twenty-three lifetime distributions as special cases. We can obtain the TNGW distribution using the quadratic rank transmutation map (QRTM) technique. We derive the analytical shapes of the density and hazard functions for graphical illustrations. In addition, we explore some mathematical properties of the TNGW model including expressions for the quantile function, moments, entropies, mean deviation, Bonferroni and Lorenz curves and the moments of order statistics. The method of maximum likelihood is used to estimate the model parameters. Finally the applicability of the TNGW model is presented using nicotine in cigarettes data for illustration.

A new flexible Weibull distribution

  • Park, Sangun;Park, Jihwan;Choi, Youngsik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.399-409
    • /
    • 2016
  • Many of studies have suggested the modifications on Weibull distribution to model the non-monotone hazards. In this paper, we combine two cumulative hazard functions and propose a new modified Weibull distribution function. The newly suggested distribution will be named as a new flexible Weibull distribution. Corresponding hazard function of the proposed distribution shows flexible (monotone or non-monotone) shapes. We study the characteristics of the proposed distribution that includes ageing behavior, moment, and order statistic. We also discuss an estimation method for its parameters. The performance of the proposed distribution is compared with existing modified Weibull distributions using various types of hazard functions. We also use real data example to illustrate the efficiency of the proposed distribution.

Stationary distribution of the surplus process in a risk model with a continuous type investment

  • Cho, Yang Hyeon;Choi, Seung Kyoung;Lee, Eui Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.423-432
    • /
    • 2016
  • In this paper, we stochastically analyze the continuous time surplus process in a risk model which involves a continuous type investment. It is assumed that the investment of the surplus to other business is continuously made at a constant rate, while the surplus process stays over a given sufficient level. We obtain the stationary distribution of the surplus level and/or its moment generating function by forming martingales from the surplus process and applying the optional sampling theorem to the martingales and/or by establishing and solving an integro-differential equation for the distribution function of the surplus level.