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Multi-response Designs Minimizing Model Inadequacies!)

Whasoo Bae?)

Abstract

This paper aims at selecting the multi-response design with # responses
minimizing the bias error caused by fitting inadequate models to responses, where the
first order models are fitted to p responses fearing the quadratic bias, while to other
r—p responses, the quadratic models are fitted fearing the cubic biases in the
cuboidal region of interest. Under the assumption of symmetric design, by minimizing
the criterion which represents the amount of error caused by fitting inadequate
models, the optimum design was found to be the one having the design moments of

second order and the fourth order as 1/3 and 1/5, respectively. Examples of the
design meeting the required conditions are given for illustration.
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1. Introduction

There are usually two types of problems concerning the choice of an experimental design,
depending on the objectives of the investigation. We may wish (1) to estimate the parameters
of a specified(known) relationship between the response and the input variables or (2)
approximate (using some graduating function like polynomial) an unknown functional
relationship within a specified region of interest, R, say.

The second case of design problem is examined here. The approximate relationship needs to
represent the true or feared relationship satisfactorily in order to be used in further studies.
Within the region of interest, it is needed to find a suitable size of a design which enables
the fitted functional relationship to be close to the true relationship so that the fitted values
and the true response values are as close as possible.

For example, assume that the true relationship is explained by a quadratic model in whole
region of experiment, the region of operability, say O, but we do not know this. If we fit the

first order model, then this one does not explain the true relationship in O. But there would
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be a region within R, where the first order represent the relationship quite well. That region
specified by a suitable design point set is needed to be found, so in that region, the first
order explains the relationship successfully.

Box and Draper(1959, 1963) examined this type of design problem in the spherical region of
interest by minimizing the gap between the fitted response values and the true values in the
single response case. Two types of errors, the variance error and the bias error, were
introduced, where the former was caused by the random fluctuation and the latter by fitting
an inadequate model. The suitable design was shrunk to minimize the dominant bias error,
while the design should be expanded to the experimental range for the dominant variance
error. With equal amount of both the variance error and the bias error, the design had to be
expanded slightly, about 10 % of the dominant bias error case. Thus the bias error was found
to have large influence on design, when it was dominant. Draper and Lawrence(1965)
discussed this type of problem considering the cubic region of interest.

Kim and Draper(1994) and Bae(1995) extended this problem to the multiple response case
using the spherical region of interest. In Kim and Draper(1994), the first order model was
fitted to all responses fearing the second order bias and Bae(1995) discussed about fitting the
second order model to responses fearing that the true relationship might be represented as a
cubic order model. The suitable design was found by minimizing a criterion represented by a
matrix form, where the determinant, the trace, and the maximum eigen value of criterion were
used for minimization. The multi-response case gave similar results to those in single
response case for the dominant error as described in the first paragraph.

In this work, the multi-response design problem is reexamined in the cuboidal region of
interest, assuming that the graduating function for each response is to be a first or second
order polynomial. The suitable design is required to be chosen so that the fitted function for
each response represents the true or feared functional relationship as closely as possible
within the given region of interest, while the true or feared models are assumed to have
higher orders than the fitted models by one. Also in finding the suitable design, the criterion
used here is not a matrix form but a scalar form which describes the amount of error caused
by fitting inadequate models.

In Section 2, the form of criterion is given and Section 3 shows the result after minimizing
the criterion. The example of designs satisfying the conditions are given for illustration in
Section 4 and finally, the concluding remarks are shown in Section 5.

2. The Criterion

Suppose that there are N observed values of # responses and each response is measured
on k input variables, where the region of interest is assumed to be cuboidal and without loss
of generality, we can set —1<x,<1, for 7=1,:-*, k because it is always possible to

transform every range to [-1, 1].
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The first order models are to be fitted to p responses fearing the true model might be

quadratic ones, while to other #»— p responses, the second order models are to be fitted
fearing the cubic bias. It is also assumed that there are no common parameters among the
responses so that the parameters can be estimated by using the original least squares
method to each response independently as shown in Box and Tiao(1973) and Box and

Draper(1965). Let §(x)=( ;’(1) (%), ;’(2)(95),"', JA’(r) (x))°

and 72(x)=(nq (x),7¢0(2),, 7(5(x))" be rx1 vectors of fitted responses and true
values, measured at a given input vector x= (x, xy, =+, x;) *, respectively. Then,
Yo (2)= B\‘)(’7+Z‘1 B\lmx, 2.1
and
7y(%) = Boy + Z Bryxit Z;mgﬁ’”‘(” XiXm , for 1=1,2,-,p (2.2)

For i=p+1,-,7v,

ey (2)= Z;})(,)Jrg Brpxit gmg Bim(y X1 %m (2.3)

and
”(z)(x)z :80(,)+ g Bl(,)xl-l_ gng Blrn(,)xlxm_*' grgngm Blmn(,’) XiXm Xn (2.4)

Under this situation, the design is to be selected focusing on the case when the bias error
is dominant. The criterion to be used here is represented as the amount of the expected
standardized bias integrated over the region of interest, K, and adjusted by the number of

observations N and weight £2. The form of criterion is

J=Ne [[E{(H(0)) = (0] 3 B2}~ o(x)]dx 25)

where X 17[ Var{(y(l),---,y(,))'}]—l={G"j, i,7=1,--,7} is the inverse of covariance
matrix of responses and £2=1/ fR dx in R and 0, otherwise. The covariance matrix of

responses, which is usually unknown, is assumed to be known.

The design minimizing J is the one suitable for reducing the bias error caused by fitting
inadequate models to responses as small as possible.
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3. Results

If we assume the design to be symmetric for the informations to be given symmetrically,
then the design moments of all odd orders are set to be zero so that

uﬁ‘ x,,Id/N = (), where dis an odd number for I=1,---, % (3.1)

and

{ ﬁl xuld' x,,zdz xukd"}/N = (), where at least one of d,’s is odd. (3.2)
=

With the symmetry assumption, computing the criterion in (2.5), we could get that
J = B, + By, + By, where

B = NeZi 3o’ [ (BG) - 1 EG) - n)dx,
B, = N2 3 3% o' [ (E(3)—2}{EG)—rn)dx , and

By = 2Ne3 3% o [ (B — ) EG) - nddx = 0,

because y; for i=1,---,p has bias of the second order and 3/); for j=p+1, -+, » has bias

of the third order so the multiplication of these two terms results in the order of odd order,
where the design moments of all odd orders are assumed to be zero as in (3.1) and (3.2)
because of symmetry. Hence the criterion in (2.5) is represented as a sum of two parts, which

iS]=Bl+Bz.

In J the weight function is set to be uniform, where £2=1/ fRdx in R and 0, otherwise.

Since the region of interest is cuboidal and —1<x,<1, for i=1,--,k £2=1/ fRa’x=l/2k.

5 (=D"MP|,

Also o= Pl oo , where |P | is the determinant of correlation matrix of responses
™~

ﬂ Im(2)

P and |P|; is the minor of ¢ in |P]| and let m

= Ay with o; as the standard

deviation of the i™ response so that @) Tepresents the relative amount of S, to the

variation in the 5™ response.
First substituting these terms into B; in J, and if we complete the integration in Bj, we

have
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(D™ P, .
B, = ,g,g 2] “ ayy 'Br ayj

(3.3)
Cl 2
, where  ayy=1(anw, ", Ty, T12(9s "> Qe—1.4(5) ~ and B,=[ ]
a3 G
with
(2, 4 2 .. 2
A+ 15 A A
2 2, 4 2 2
A A + a5 A A
Cl= ) ] (3.4)
2 2 2 2., 4
A A A A%+ 15
ﬁ 2
. . 1 =4 Xul
as a kX £k matrix with A=c—§, where c="pN for /=1, k Also
oo - - -0
o= (35)
0 0 0

is a kX (5) matrix and C3= 2, while

0 ,
£ 0 0
o% 0
Cl= : =L (3.6)
.. 9
.. 1
0 0 0 3|

, where I, is a sXs identity matrix with s=(k).
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Similarly, we have

By = z'=;‘lu=p 1% amy "Bi am (37
, where
amn= (@i » @120 "> Qikei» Q22200 » Q211(Ds "> A2kkDs " » Lkkk(Ds "
QuIDs " @ ko k=1, k=100 2123(Ds """ @ k=2, k=1, D)
and

I Iy
By= (3.8)
I; Iy
with I} as a A*xk® block diagonal matrix where
r o - - -0
o ro - -0
0 0 r
with
’112+(T§4)W ,11,124 Ady - - AAg
Moo Wty A A2’
1
r= 5 (3.10)
2 2 . 2 4
Al A2 AT AT
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2 2
ﬁl Xul Xum

_f jéﬁﬁ

and A1=%—% and A,= c—%' where % N ¢ and "u—‘W——=f, for I#=m.

The matrix, I} is a k?X ({]36) zero matrix and I'; = I’ , while F4=§17— I, , where I, is

a gXgq identity matrix with q=(?/;C )

Since both B; and B, are positive, it is possible that we do minimization of J sequentially
to B;, and B, As seen in (3.4) through (3.6), only the part C; in B; depends on the
design moment so that c=% makes B; minimized. In B,, only the part I} contains the

terms for design moments as shown in (3.9) and (3.10), so that B is minimized when

3 f_1
5 and c =73

£
c

Combining the conditions for the second order design moment, cz% and the fourth order

one, =3 and £
5 c

ol

= %, the proper design minimizing the model inadequacies can be

1

described as the one satisfying c¢= 3 e= , and f=%.

U

4. Examples

Consider a point set with (*a, *a,-, *a) and (b, 0,-,0),-+,(0,--+,0,£b), where
there are #, center points (0, 0,--,0). If we allow »; and 7, replications on levels ¢ and &,
respectively, then there are N=#(2% + »,(2k) + 7y points.

For the case with k=1, the optimum values of & and & satisfying the conditions,

__2And*+nd) 1 __2And'trne) 1 o
c= 2+ 27,41y 3 and e= Grtontny 5 are given in Table 1.

The optimum sizes of a and b having equal replications without center points are found to

be .188 and .795, respectively, regardless of the number of replications. With 7= r,=ng, we
have .375 and .832 for a and & respectively, which is slightly larger size than those of the
case without center points. Without replications, the maximum number of center points
satisfying the conditions is 3 and the value of a increases as the number of center points
increase, while the size of b increases up to 2 center points and decreases slightly after that.

Table 1 illustrates the result for ¢ and & with possible number of center points up to N=
15. When there are more replications on one level than the other level, the design gets larger,
compared to the case with same replications on each level.
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Table 1. Optimum values of 2 and b with k=1

N number of observations at optimum values of
-b -a 0 a b a b
4 1 1 0 1 1 0.188 0.795
5 1 1 1 1 1 0.375 0.832
6 1 1 2 1 1 0.526 0.850
6 1 2 0 2 1 0.350 0.869
7 1 1 3 1 1 0.692 0.826
7 1 2 1 2 1 0.432 0.891
8 1 2 2 2 1 0.508 0.903
8 2 2 0 2 2 0.188 0.795
8 1 3 0 3 1 0.405 0.922
9 1 2 3 2 1 0.584 0.903
9 2 2 1 2 2 0.290 0.816
9 1 3 1 3 1 0.455 0.937
10 2 2 2 2 2 0.375 0.832
10 1 3 2 3 1 0.507 0.946
10 2 3 0 3 2 0.300 0.836
11 2 2 3 2 2 0.451 0.844
11 1 3 3 3 1 0.558 0.949
11 2 3 1 3 2 0.358 0.851
12 2 3 2 3 2 0.411 0.864
12 3 3 0 3 3 0.188 0.795
13 2 3 3 3 2 0.463 0873
14 3 3 2 3 3 0.320 0.822
15 3 3 3 3 3 0.375 0.832

Table 2 shows the suitable values of @, b and #; in the cases with k2=2, 3 and 4

L . . _ {n@*a) + m(2k")) 1
satisfying the conditions for design moments c= (2 k) T 728 + 7y =73
{(n(2%a") + n(2k6")} 1 {r|(2*d))} 1
= e == and f= 7 =,
r1(2%) + (28 + ng 5 2+ +n, 9

It is shown that the designs with £=2 have bigger « and smaller b and also needs more
center points than the designs with .2=1. The optimum value of & increases under the same
number of observations as we increase the number of inputs, Ak With same situations

regarding to replications, more center points are needed, while the size of a decreases and
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that of b increases as £ increases.

Table 2. Optimum values of @, b and #n; for £=>2

k 71 7y 7 a b
1 1 6.36 0.795 0.752
9 1 2 8.52 0.869 0.691
2 1 9.32 0.738 0.830
2 2 12.71 0.795 0.752
1 1 11.19 0.769 0.782
3 1 2 1513 0.836 0.714
2 1 16.33 0.718 0.868
2 2 22.39 0.769 0.782
1 1 18.64 0.738 0.830
4 1 2 2542 0.795 0.752
2 1 27.02 0.695 0.929
2 2 37.28 0.738 0.830

5. Conclusions

The problem of selecting a multi-response design minimizing the model inadequacies was
investigated in the cuboidal region of interest, where p responses were assumed to be fitted
by the first order models fearing the quadratic bias and to the remaining #— p responses, the
quadratic models were fitted fearing the cubic bias.

The design was found by minimizing a criterion which specifies the mean squared
standardized bias integrated over the region of interest, weighted by uniform weights and
adjusted by the number of observations.

Assuming the symmetry of design, the suitable design which minimizes the model
inadequacies in fitting the models of up to the second order fearing the bias of order higher
than the fitted model by one, was found to be the one satisfying the conditions for the second

order design moment as c¢= i % /N=1/3 and the fourth design moments as
=
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= 2&1 % IN=1/5 and f= i“l %ul Xume /N=1/9. The correlations between the responses

which appeared in this criterion seemed control the bias error in some way, but the amount
controlled by the correlations did not have much influence in the dominant bias error case as
shown in Kim and Draper(1994) and Bae(1995).

Applying these conditions to the design point set with (*a, *a,-*,*a@) and
(£b, 0,---,0),---,(0,---,0, £ b), including %, center points (0,0,---,0) with k input variables,

it is shown that the designs need more center points as # increases. The designs for the
case with k=2 have bigger @ and smaller b than the design with =1 has. Also the

optimum value of & increases. while the size of a decreases, as we increase k.
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