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Discrete Approximation to the Optimal
Density in Moment Problemsl

Changkon Hong2

Abstract

In this paper we present some approximation theorems related to the problem of
finding optimal densities with prescribed moments. The implementation of the
approximation theorems is to be done in some examples.

1. Introduction

Finding the smoothest function with various properties has recently been a popular topic
in both mathematics and statistics (cf. Eubank (1988), Silverman (1986) and Wahba (1990)).
In the function fitting problems, some difficulties arise from the given constraints (cf. Good
and Gaskins (1971) and Tapia and Thompson (1990)). The problem of finding smooth
densities with prescribed moments ci,...,c. was studied by Hong (1992). The solution of

the problem is to be obtained by minimizing the seminorm [f"™ ) ;, over Sobolev space
W5 under moment constraints (cf. Adams (1975). If we let  J(P= 1)L and let

1
Lif= J; ¥ f(¢) dt then the problem can be formulated as follows:

Minimize JH on W2
subject to: L;f = ¢j j=0,....n,
and f(£)20 Vt€[0,1],

where co=1. The existence and uniqueness of the smoothest density with the moment
constraints was proved and the characterization of the solution was also obtained in Hong
(1992). He showed that on any interval where the solution f* is positive, f* agrees with a
polynomial of degree <2m+n and that f"®” agrees with a single polynomial of degree <n
on its support. Furthermore, f is the unique solution if and only if f is nonnegative,

satisfies the moment constraints, satisfies the boundary condition

£f20=r"(1)=0, i=m,...2m-1 and f™ is of the form
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FUO =0+ (~D™ Lm-1(TN0),
'3 m-1
where Im(g)(t)=£L f g(tm) dfmdtm-1..dt1 , 0(t) is a polynomial of degree <m+n and

t is a nondecreasing function which is constant on each interval where f(t)>0.

Using the characterization of the solution obtained in Hong (1992), we can find the exact
minimizer. But it needs lots of work and in some sense it is by tral and error. It would be
useful for finding the minimizer if we develop an automatic algorithm. In this paper we will
achieve this by developing discrete approximation to the minimizer.

2. Discrete approximation

A penalty method can be hired to calculate the minimizer f*. This method is often used

to find solutions to optimization problems with equality constraints. If we let for fe W

Jup=3emLip* ap,

then the penalty method leads a new optimization problem.
Problem (P u):
Minimize Ja(H on w2,
subject to:  Lof=1,
and f()20 Vte[0,1].
As d goes to 0, the penalty j:‘zl(Cj'Lijz for the lack of fitness to the moment
constraints becomes more important than the penalty J(f for the roughness. Let

Mi={fe W% | Lo f=1, f()20, ¥t€ [0,1]}. It can easily be shown that problem (Pa) is
equivalent to the following problem.

Minimize JO on M
subject to: Fil( ci-Lif)?<pla)

for some pla) such that p(a)—0 as a—0.(cf. Schoenberg (1964)). Because of this equivalence

between these two problems, we can find an approximation to f° by solving problem (Pa)

for sufficiently small @. The existence and uniqueness of the solution to problem (Pa) can
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readily be proved by the same method used in Hong (1992). Let fa be the unique

solution to problem (Pa).
2.1 Some approximation theorems

Here we will construct a discrete approximation to the minimizer f: for problem
(Pa),(whence to the minimizer f*), by solving a finite dimensional version of problem
(Pa). For given positive integer k, consider the uniform mesh 0=to<t:1< ... <tx=1, where
ti=ih with h=1/k. Let So(to,...tx) and Si(to,.--tx) denote space of constant and linear spline
functions on [totx] with knots to....tx, respectively. The m-th divided difference of f at the
points ti ti.,.-, ti+m is recursively given by

tiol, oo, tiomlf =i, oo Liom-
[tij'..)ti+m]f = [ = : ;n]f _[tl = I]f y
itm 1

with [¢;1f = ft;,). We develop some approximation theorems only for the case when m=1.

For general m, parallel theorems can also be developed.
1 k
A discrete version of 1:(f' (eN?dr would be Z;(f(t,u-f(t,'_l))z/h. Let
£

n k
Gan= 3ilciLipPsamie ) ~f(t-1))"

The following problem can be considered to be a finite dimensional version of problem
(Pq), say problem (FPa), when m=1.
Problem (FPa):
Minimize Gan(s) on Solto, ---,tx)
subject to: Los=1,
and s(£)<0 Vre[0,1].
The existence and uniqueness of the solution to problem (FPa) can easily be proved.

We have the following theorem.

Theorem 2.1 Let sa» be the unique solution to problem (FP.). Then sa» converges to
fa in the sup—norm, ie.,

I san=fall sup—0 as h—0,

where Il gl sup=sup tetonn | g(t) | .
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The idea used in Scott et al. (1980) was applied to prove this theorem. The proof of the

theorem will follow from the following two lemmas.

Lemma 2.1 For each @>0, it is possible to construct a family of nonnegative functions

Spa I Solto,--,¢x) which integrate to 1 and satisfy

Gu,h(Sﬁ,,h) i ]a(ﬁ) as h—0. (2.1)

Proof Let
1 k-1 i1
Sf;’h(t)= T j=20( f ﬁ(y)dy) B (0.0(0),

is the indicator function of A. Then sg, is obviously nonnegative and

where 0a(t)
integrates to 1. By the mean value theorem, there exists an x;€(¢;,t;+1] such that
s palt)=falx;) Ve t) ti1].

By the fundamental theorem of calculus and the Holder inequality, we get
t o, A ,
|AO-fG) L= | [fidel < n 7 1A 1 e

Using this inequality and the Holder inequality again leads to
1

2 1 1
L, ([ 1050 12 a2

| Life - Lisgnl < ( 5ie1
1
_ 1 EPR NS N N2 +
= () (B 1AL 1 P
1
h 2o
< (SR 8L

It follows that
Lisgp — Lifa as h—0.

On the other hand, we already know that fi is (uniformly) continuous on [0,1].

Therefore, it can easily be shown that

1 K 2
T J;)[Sﬁ-h (fj+1)‘5ﬂvh(tj)]

1 & 2
= 2 [fa (xje1) ~falx)]
h j=0
= lfal Z.+Oth) .

This proves the lemma.
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Lemma 2.2 For each d>0, it is possible to construct a family of nonnegative functions

fun in Wi which integrate 1 and satisfy
Il fan—sanll sw—0 as h—0 (2.2)

and
Gap(san) = Jalfan) as h—0. (2.3)
Proof Let fi» be the linear interpolation of s&us at the points oo, - t%-1,tx, Where

t}=—%-(t,-+t,w1) . Then fa» is obviously nonnegative and integrates to 1. Recall that sGas is

the unique minimizer for problem (FP.), thus Gaal(sas) € Ganl(sps). From Lemma 2.1 we

know that  Gaals s} — Jalfa), as A—0. All these facts together imply that

Sljp | s%altis1)-san(t) ] =0 as k0. 2.4)
Equation (2.2) follows from Equation (2.4) and the following obvious inequality

sy
hfan—sanll s < P stun(tie1) -sanlt) |

J
Now a straightforward calculation shows that
1 k-1
[ anen®de= 4 Tlstn (i) -sant)]*+ O, 25
i=

On the other hand, using Equation (2.4) leads to

Lifan = Lisan — 0 as h—0. (2.6)
Combining (2.5) with (2.6) gives Equation (2.3) and the lemma is proved.
Before we prove Theorem 2.1, we will show that the following claim is true.

Claim 2.1 The functional Ja« 1is uniformly convex on the convex subset
Mi={feWi|Lof=1 and f(£)20, Vt€[01]}.
Proof Uniform convexity of Ja is equivalent to uniformly positive definiteness of Ja
relative to M, ie., for each feM;,
JoD (KR 2CI Rl s VAET(MLS)
for some C>0, where T(Sx)={h€Wi| AA>0 such that x+Mh€ES}, the cone tangent to S
at x. Note that T(M.f) is a subset of the set Mo={heW}1Loh=0}. The second Giteaux

derivative of Ja is given by

- e} 1,
T (h,h)=2i:ZI(L,~h)2+2f0 (R (£)%dt .
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1 .
And h(1)= J; t h(t)dt on the set Mo. Using this and the Holder inequality leads to
4 M
1Al % < =5 [ (o)
This proves the claim.

Now we prove Theorem 2.1.
Proof of Theorem 2.1 By the optimality of fi and s&us with respect to problem (Pa)
and problem (FPa), respectively, we have

Jalfa) < Jalfan) @27
and
Gan(san) S Ganls ). 2.8
Combining (2.1), (2.3), (2.7) and (2.8), it follows that
Jalfan) = Jalfa)  as  ho0. (2.9)

By the uniform convexity of J. for all Be(0,1) and for some C,

B]a(f‘a,h)+(1‘s)_]a(ﬁ)_ Ja(B(fa,h)"’(l_B)f:)
2 CB(1-B) Il fanfall % .

By this inequality and the optimality of fi, we get

]a(fa,h)‘]a(f;) > C(1-B) "f'u,h_f: | 2w§ . (2.10)

Combining (2.9) with (2.10), we see that fu» converges to f: in Wi-norm. Since W? is
a reproducing kernel Hilbert space (RK.H.S.) of functions defined on a compact set [0,1],
convergence in Wi-norm implies convergence in sup-norm. Therefore, from (2.2) and the
triangle inequality we arrive at

Il s'an=fall sup = O as 0.

This proves the theorem.
2.2 Numerical implementation

For the case of m=2 the solution f: will be approximated by using the linear spline and
the discrete version of the roughness penalty lf1 ... The problem will be formulated as
follows:

Minimize Gan(f) on Si(to,-,tk)

subject to: Lof=1,
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and f(t)<0 Vte[0,1].
In this case the objective functional Gaa(f) is given by

n k-1
Ganlf)= 2:1(crLiﬂzﬂihE(2[t,~-1,tj,t,~+1]f )2

Let
pi=f(t), i=0,..k.
Then
2) _{p.i-1+_}T(pj‘pjﬂ)(t—tj—l) if t€[tj-1,t)
0 if t&{to,txl
_{ %(pj-pj—l)t'(j-l)pj+jpj—1 if t€(tj-1,¢))
0 if t€[ro,tx] .
and

K J
Lf =2 f: () dt

Jj=1 5
k vh j T j~ [+ . . 1
=J§ f(jﬁm[_P;hmt, 1. ((G-Dp; - jpj-1t'] dt .

After tedious calculation, we get
T
Lif =aip,
where

hi+l

R | N2 oiv2 o ie2

(i+2-k)K 4+ (k-1)"?

So we have

where

b
W
Q

N

)

2
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Since
[ti-1,titialf= _ZlhT(pi‘l_Zpi*'piﬂ) ,
we have
Ganf)=cTac o - 2cT0ATip + pTA 0ATy + a3 pTHp
where
C_O = (Cly"'ycz;y
Ao = (ai,.-an
and
1 -2 1 O . 0
-2 5-4 1 0
1 -4 6 -4 1 0
0 1 -4 6-41 0
H = : : H
0 1-4 6-4 1 0
0 1-4 6 -4 1
0 1 -4 5 -2
0 0 1 -2 1
Let
Qun(p) = ~2cToATop+pTA 2ATp+a 7 p"Hp .

If p is determined, then f is completely determined. Since f(t)20 is equivalent to
pi20, Vi=0,...k, problem (FPs can be restated as the following k+1 dimensional

optimization problem.
Minimnize Gan(p) on R*!
subject to: i) a(’)rp—1=0
i) piz0, 1=0,....k .
Example In this example we use the first two moments c¢1=1/5, c2=1/16. We could find

values of p which exactly satisfies the moment constraints for reasonably small values of
k. Therefore, we put a=0 and solve the following quadratic problem:

Minimize pTHp on RrR*!

subject to: i) aip-c1=0, i=0,1,2,
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ii) pj20, Jj=0,... k.
For the values &k = 20, 50, 100, the fitted density fi are obtained using the IMSL
subroutine, DQPROG (cf. Powell (1983a, 1983b)). Here f; is the linear interpolation of the
points  (to,po), .-, (tk,pk), where p° is the solution of the above quadratic problem. The

following figure shows the exact solution f°(¢) and approximation to it for the values of

k = 20, 50, 100, respectively.

< ] ~
™ A Rt
E « g ™
° T ¥ v L v v b
0.0 04 0.8 0.0 c.4 0.8
t t
When h=0.05 When h=0.02
Lo I <
= & = N
o {—o s
0.0 c.4 c.8 0.0 0.4 0.3
t t
When h=0.01 Exact Solution

Figure. The exact solution and the approximated densities
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