• Title/Summary/Keyword: Statistical distributions

Search Result 1,004, Processing Time 0.022 seconds

Novel approach to predicting the release probability when applying the MARSSIM statistical test to a survey unit with a specific residual radioactivity distribution based on Monte Carlo simulation

  • Chun, Ga Hyun;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1606-1615
    • /
    • 2022
  • For investigating whether the MARSSIM nonparametric test has sufficient statistical power when a site has a specific contamination distribution before conducting a final status survey (FSS), a novel approach was proposed to predict the release probability of the site. Five distributions were assumed: lognormal distribution, normal distribution, maximum extreme value distribution, minimum extreme value distribution, and uniform distribution. Hypothetical radioactivity populations were generated for each distribution, and Sign tests were performed to predict the release probabilities after extracting samples using Monte Carlo simulations. The designed Type I error (0.01, 0.05, and 0.1) was always satisfied for all distributions, while the designed Type II error (0.01, 0.05, and 0.1) was not always met for the uniform, maximum extreme value, and lognormal distributions. Through detailed analyses for lognormal and normal distributions which are often found for contaminants in actual environmental or soil samples, it was found that a greater statistical power was obtained from survey units with normal distribution than with lognormal distribution. This study is expected to contribute to achieving the designed decision error when the contamination distribution of a survey unit is identified, by predicting whether the survey unit passes the statistical test before undertaking the FSS according to MARSSIM.

A Comparison of Size and Power of Tests of Hypotheses on Parameters Based on Two Generalized Lindley Distributions

  • Okwuokenye, Macaulay;Peace, Karl E.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2015
  • This study compares two generalized Lindley distributions and assesses consistency between theoretical and analytical results. Data (complete and censored) assumed to follow the Lindley distribution are generated and analyzed using two generalized Lindley distributions, and maximum likelihood estimates of parameters from the generalized distributions are obtained. Size and power of tests of hypotheses on the parameters are assessed drawing on asymptotic properties of the maximum likelihood estimates. Results suggest that whereas size of some of the tests of hypotheses based on the considered generalized distributions are essentially ${\alpha}$-level, some are possibly not; power of tests of hypotheses on the Lindley distribution parameter from the two distributions differs.

Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions (포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가)

  • Park, Sung-Min;Kim, Young-Sig
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.

Some Exponentiated Distributions

  • Ali, M. Masoom;Pal, Manisha;Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.93-109
    • /
    • 2007
  • In this paper we study a number of new exponentiated distributions. The survival function, failure rate and moments of the distributions have been derived using certain special functions. The behavior of the failure rate has also been studied.

A Note on a Family of Lattice Distributions

  • Stefen Hui;Park, C. J.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.315-318
    • /
    • 2000
  • In this note we use the Poisson Summation Formula to generalize a result of Harris and Park (1994) on lattice distributions induced by uniform (0,1) random variables to those generated by random variables with step functions as their probability functions.

  • PDF

Rate of Convergence of Empirical Distributions and Quantiles in Linear Processes with Applications to Trimmed Mean

  • Lee, Sangyeol
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.435-441
    • /
    • 1999
  • A 'convergence in probability' rate of the empirical distributions and quantiles of linear processes is obtained. As an application of the limit theorems, a trimmed mean for the location of the linear process is considered. It is shown that the trimmed mean is asymptotically normal. A consistent estimator for the asymptotic variance of the trimmed mean is provided.

  • PDF

Asymptotic Distributions of Maximum Queue Lengths for M/G/1 and GI/M/i Systems

  • Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • In this paper, we investigate the asymptotic distributions of maximum queue length for M/G/1 and GI/M/1 systems which are positive recurrent. It is well knwon that for any positive recurrent queueing systems, the distributions of their maxima linearly normalized do not have non-degenerate limits. We show, however, that by concerning an array of queueing processes limiting behaviors of these maximum queue lengths can be established under certain conditions.

  • PDF

On a Skew-t Distribution

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.867-873
    • /
    • 2001
  • In this paper we propose a family of skew- f distributions. The family is derived by a scale mixtures of skew-normal distributions introduced by Azzalini (1985) and Henze (1986). The salient features of the family are mathematical tractability and strict inclusion of the normal law. Further it includes a shape parameter, to some extent, controls the index of skewness. Necessary theory involved in deriving the family of distributions is provided and main properties of the family are also studied.

  • PDF

ORDER RESTRICTED STATISTICAL INFERENCE ON LORENZ CURVES OF PARETO DISTRIBUTIONS

  • Oh, Myongsik
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.457-470
    • /
    • 2003
  • The comparison of two or more Lorenz curves of Pareto distributions of first kind under arbitrary order restriction is studied. The problem is turned out to be a statistical inference problem concerning scale parameters under order restriction. We assume that the location parameters of Palate distributions are completely unknown. In this paper the maximum likelihood estimation and likelihood ratio tests for and against order restriction are proposed.

Statistical Inference Concerning Peakedness Ordering between Two Symmetric Distributions

  • Oh, Myong-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.201-210
    • /
    • 2004
  • The peakedness ordering is closely related to dispersive ordering. In this paper we consider the statistical inference concerning peakedness ordering between two arbitrary symmetric distributions. Nonparametric maximum likelihood estimates of two distribution functions under symmetry and peakedness ordering are given. The likelihood ratio test for equality of two symmetric discrete distributions in the sense of peakedness ordering is studied.

  • PDF