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Abstract

This study compares two generalized Lindley distributions and assesses consistency between theoretical and
analytical results. Data (complete and censored) assumed to follow the Lindley distribution are generated and
analyzed using two generalized Lindley distributions, and maximum likelihood estimates of parameters from
the generalized distributions are obtained. Size and power of tests of hypotheses on the parameters are assessed
drawing on asymptotic properties of the maximum likelihood estimates. Results suggest that whereas size of
some of the tests of hypotheses based on the considered generalized distributions are essentially a-level, some
are possibly not; power of tests of hypotheses on the Lindley distribution parameter from the two distributions
differs.
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1. Introduction

The Lindley distribution (Lindley, 1958) was introduced in connection with fudicial distribution and
Bayes theorem, but it has not seen much utility in the analyses of time-to-event data until the past
decade. Its mathematical properties and real data applications were recently explored by Ghitany et
al. (2008). Since then, in attempts to enhance its flexibility, many authors have considered some gen-
eralizations of the Lindley distribution (see for example, Zakerzadeh and Dolati (2009) and Nadarajah
etal (2011)).

Generalization entails the addition of parameter(s) to the Lindley distribution and specification of
conditions under which the generalized distribution reduces to the Lindley distribution. Theoretical
results suggest that, under certain conditions, a generalized Lindley distribution reduces to the Lindley
distribution with the same scale parameter. But these results provide no practical guideline on how the
generalization affects the parameter estimate of the resulting Lindley distribution. Additionally, the
results provide no possible implications of generalization on size and power of tests on parameter(s).

Generalized distributions have more parameters than their parent distributions. Distributions with
more parameters, however, have fewer residual degrees of freedom than those with fewer parameters.
Such models (models are used interchangebly with distributions in this study) are often compared
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using approaches, such as, the Akaike information criteria (AIC; Akaike, 1974) and Bayesian in-
formation criteria (BIC; Schwarz, 1978), that take this estimation penalty into consideration. The
thrust behind the use of these comparison approaches is to compare non-nested models based on their
log-likelihood but with penalty for the number of parameters in the respective models. In some set-
tings, selecting best model based on AIC and BIC could be challenging since they are not always in
agreement (Rizopoulos, 2012).

Tests of hypotheses on parameters are commonly accomplished through methods that draw on
either likelihood ratio theory or asymptotic properties of parameter estimates. It may worth the effort
to investigate how generalization of the Lindley model possibly affects the estimate of the parameter.
Because different approaches to generalization may have their own associated uncertainty (enthropy)
and variability. Results from this investigation provided us with a tool for evaluating two generalized
Lindley distributions and for assessing consistency between their theoretical and analytical results.

This study is motivated by the need to select between the presented generalized Lindley models
to fit a data set. To the best of our knowledge, we are not aware of any study that assessed the perfor-
mance of the presented generalized Lindley models based on the property of their parameter estimates,
nor are we aware of any study that considered these models in regard to censored observations.

In this article, using a Monte Carlo simulation technique, we (1) assess size and power of tests
of hypotheses on parameters when modeling Lindley-distributed data using two generalized Lindley
distributions with censored and non-censored data; and (2) contrast results of size and power of tests
from the two generalized Lindley distributions.

2. The Lindley Model and Two of Its Generalizations
2.1. The Lindley model

Denote by 6 the scale parameter; the Lindley probability density function (pdf) is

2

f(x;0) =

s 6’(] + x)exp(—0x), x,0>0. 2.1)

The corresponding cumulative distribution and survival functions are

1+6+86
F0)=1- % exp(—0x), x,0> 0,
and
1+6+86
S(x;6) = % exp(=0x), x,0> 0,
respectively. Suppose Xi, X», ..., X, is a random sample from the Lindley distribution, the estimator

for both maximum likelihood estimate (MLE) and method of moments estimate of the parameter 6 is

— — 2 —
- —(X—1)+ 2}2){—1) +8X, ‘o0

See Ghitany et al. (2008) for detailed mathematical characteristics of the Lindley distribution.
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2.2. Generalized Lindley models

In attempts to enhance flexibility of the Lindley distribution, several authors considered different
generalizations of the Lindley model. Zakerzadeh and Dolati (2009) considered the pdf

6%(0x)” " (y + yx) exp(—6x)
(y+OI'(y +1)

For ¢ = v = 1, Equation (2.2) reduces to the Lindley pdf in Equation (2.1). Besides not providing
the distribution function for Equation (2.2), the authors note that the survival function of Equation
(2.2) may only be written in form of incomplete gamma function when ¢ is an integer; the hazard
rate function h(x; y, 8, y) has no closed form. Nonetheless, Equation (2.2) has increasing hazard rate
function for ¢ > 1; bathtub shaped hazard for < 1 and ¥ > 0, and decreasing hazard for ¢ < 1
and y = 0. See Zakerzadeh and Dolati (2009) for detailed mathematical properties of Equation (2.2).
The authors argued that Equation (2.2) is the pdf resulting from a mixture of two random variables
distributed as gamma(y, 8) and gamma(y + 1, 6).
Nadarajah et al. (2011) considered the pdf

flw,6,y) = , ¥,0,x>0. 2.2)

$0°
1+60

(1+6+6x)
1+6

J(x;¢,6) = 1

o-1
(1+x) exp(—@x)] exp(—0x), x,¢,6>0. 2.3)

The corresponding distribution and survival functions of Equation (2.3) are

1 [
F(x;¢,9)=[1——( +0+6%) exp(—@x)] . x,0>0,
1+6
and
1+0+80 s
S(x;¢,9)=1—[1—%exp(—9x)} . 5,050,

respectively. For ¢ = 1, Equation (2.3) reduces to the Lindley pdf in Equation (2.1). Equation
(2.3) accommodates monotonic increasing and decreasing and bathtub shaped hazard rate function
(Nadarajah et al., 2011). See Nadarajah et al. (2011) for detail mathematical properties of Equation
(2.3).

3. Test of Hypotheses

Let the observed and censored event times be ; (i = 1,2,...,d) and Ty (k = 1,2,...,¢c = n —d),
respectively. The log-likelihood for such a sample is

d N
InL = Zlnf(x;e,q) + Z InS (x;6,7),
i=1 k=d+1
where f(x; 6, 1) = h(x; 6, n)S (x; 6, ) denote the density function, and S (x; 6, ) the survival function.
The MLEs of the parameters may be found iteratively. The asymptotic covariance matrix of the
estimators is approximately

PInL]"
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)
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wherep =n,m...,np,andt = p + 1.
For density in Equation (2.2) = ¢, v; for density in Equation (2.3) n = ¢. Let @ = (6,5). The
tests of hypotheses considered in this study are

Hy: O = 0, (3.1
and
H() 0= 9(). (32)

Let V(0) be the estimated covariance matrix of ©. The statistics, based on asymptotic properties
of O, for testing the Hy in Equation (3.1) is

T =(LO&-0,) [LVOL]| (LO-0,). (3.3)

where L is a matrix of known coefficients. Under Hy, T is asymptotically distributed as chi-square
with r degrees of freedom, written 7 ~ X(zr); r represents the rank of L. For the hypothesis in Equation
(3.2), the test statistics in Equation (3.3) reduces to

Tw=[0-6] VO], T~

The data sets used in assessing power are same as those used in assessing size. However, in
assessing power, we produced a new hypotheses by adding 20% to the parameter values used in
generating the data sets. This is because in the application setting that warranted present study, the
aim is to ensure that any of the generalized model selected should be able to detect at least a 20%
change in Lindley parameter value to which the generalized models reduce to while maintaining false
positive rates within nominal 5% value, as we considered a change of at least 20% a meaningful
minimum detectable difference.

Failure to reject the hypothesis in Equation (3.1) implies that the generalized distribution under
consideration reduces to the Lindley distribution. Similarly, failure to reject the hypothesis in Equation
(3.2) implies that generalization has no significant effect on the parameter of the Lindley distribution.

3.1. Generating Lindley times-to-event data

Data are simulated under the assumption that they follow the Lindley distribution with parameter 6,
using the method described by Peace (1976), Peace and Flora (1978), Bender ef al. (2005), Qian et
al. (2010) and Okwuokenye (2012). Briefly, suppose U; (i = 1,2...,n) are random numbers, times-
to-event (#;) may be obtained by solving the following equation of the cumulative hazard H(t;) for
t;:

H(t) = fi ho (w)dw = —[In(1 — u;)], 34
0

where hy is the hazard rate function, and U; is a uniform random variable. The #; for the Lindley model
are obtained by solving for #; in the non-linear equation that results from replacing /gy in Equation (3.4)
with the Lindley hazard rate function, given by

P (1+1)

h(t;0) = , 6>0,tr>0.
(%:6) 0+ 1+ 61
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Table 1: Size of tests on parameter(s) based on generalized Lindley distributions using complete data

Ho 6 =0o
S Sample size (n)
# Replicates Model 25 350 100 250 500 1000
5,000 Model A 532 522 768 510 538 510
Model B 1.90 2.08 1.80 2.66 3.50 3.50

Note: Values of &; = 100 X T5./m s (s = A, B), where T. is the number of times the tests rejected Hy out of m replicates
for different sample sizes with complete data. Tests are based on Wald chi-square and are run at & = 0.05; A and B denote
models due to Nadarajah et al. (2011) and Zakerzadeh & Dolati (2009), respectively.

Table 2: Power of tests on parameter(s) based on generalized Lindley distributions using complete data

Hy:0=6)+A
# Replicates Model Sample size ()
25 50 100 250 500 1000
5,000 Model A 15.40 24.28 43.12 78.68 96.94 99.98
Model B 6.88 9.46 15.98 32.24 58.92 90.08

Note: Values of &; = 100 X T./m s (s = A, B), where T. is the number of times the tests rejected Hy out of m replicates
for different sample sizes with complete data. Tests are based on Wald chi-square and are run at @ = 0.05; A and B denote
models due to Nadarajah et al. (2011) and Zakerzadeh & Dolati (2009), respectively.

Table 3: Size of tests on parameter(s) based on generalized Lindley distributions using complete data

Model AHy:¢p=1;Model BHy : ¢y =y =1
Sample Size (n)

# Replicates Model 25 50 100 250 500 1000
5000 Model A 3.90 420 452 7.66 7.80 474
Model B 7.12 11.24 16.04 16.70 12.34 7.18

Note: Values of &; = 100 X T5./m s (s = A, B), where T. is the number of times the tests rejected Hy out of m replicates
for different sample sizes with complete data. Tests are based on Wald chi-square and are run at & = 0.05; A and B denote
models due to Nadarajah et al. (2011) and Zakerzadeh & Dolati (2009), respectively.

Times-to-event are generated by specifying the Lindley parameter (6 = 1.5) to mirror the data set to
be analyzed by the authors. It is assumed that a sample of N independent, observable survival times
(t1,t,...,ty) are available on a population; of those, d (d < N) are the observed times of the event,
and the remaining k = N —d are censored at the end of the study. The distribution of the 20% censored
data are assumed to follow the Lindley distribution.

In assessing size and power of tests of hypotheses, m = 5,000 independent data sets are generated
for each sample size (n). Quasi-Newton method, with 1078 convergence criteria, is used to obtain the
maximum likelihood estimates prior to assessing the size and power of tests. Simulations and analyses
are performed using SAS/STAT® software version 9.3 of SAS system for Windows. Copyright©
2011 SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.

4. Results and Discusions
4.1. Results

Noted in Section 3 are the parameter values for assessing size of tests based on the two generalized
Lindley distributions. The 6 value for assessing size of tests is the parameter value used in generating
t/s that followed the Lindley distribution. The 6 value used in assessing power of test is 1.8, reflecting
a 20% addition to the original Lindley parameter value. The proportion &; = T,./m (s = A, B)
denotes the estimated size of test or false positive rates, where T';. represents the number of times the
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Table 4: Size and power of tests on parameter(s) based on a generalized Lindley distribution due to Nadarajah et
al. (2011) using 20% censored data

Hyc : 6 = 0o, HOD29=00+A
Sample size (n)

# Replicates Hypotheses 75 5 00 250 500 1000
5000 C 5.00 4.94 4.44 4.92 5.12 5.16
D 15.40 24.28 43.12 78.68 96.94 100.00

Note: Values of &5 = 100 X Ts./m, where T. is the number of times the tests rejected Hy out of m replicates for different
sample sizes. Tests are based on Wald chi-square and are run at @ = 0.05. C and D represent size and power, respectively.

tests rejected Hy out of m replicates (Tests from model in Equation (2.3) and (2.2) are indexed by A
and B, respectively).

Tables 1-3 show the size and power of tests of hypotheses in percent (i.e., 100X &;) for the tests of
hypotheses described in Section 3, for non-censored data. Table 4 shows the results of size and power
of tests based on the considered models for data containing 20% censoring.

4.2. Discussion

This study assesses size and power of tests of hypotheses on parameters based two generalized Lindley
distributions, arising from the maximum likelihood estimates of those parameters. For complete data,
tests based on the two distributions, for the hypotheses Hy : 8 = 6, are a-level tests, as are those based
on Equation (2.3) for the hypotheses Hy : ¢ = 1. The tests based on Equation (2.2) for the hypotheses
Hy : ¢ =y =1 are essentially a—level tests with the possible exception of small samples. The size of
the Wald chi-square tests of the null hypotheses for parameters from Equation (2.2) (¢ =y = 1) are
at least 11.5% for 50 < n < 500. The hypotheses that any of the above cases is an a-level test may be
formulated as Hy : @ = 0.05, and the test statistics formulated as

& —0.05
Vo =a)/m’

where Z ~ N(0, 1). For n = 500 and m = 5,000, the estimated size is 12.34%; accordingly, z = 15.78
(p < 0.0001).

For power of tests of the hypotheses Hy : 8 = 6y, Equation (2.3) seems to consistently have higher
power than Equation (2.2) for n < 1000. The power of tests of the former is approximately 80% for
n = 250 and 100% for n = 1000.

Of note is that convergence problems were encountered for some replicates when fitting model
due to Zakerzadeh and Dolati (2009)to the generated Lindley-distributed data sets. For sample sizes
of 25 and 50, 4,998 out of 5,000 replicates converged. Accordingly, the reported estimate of size and
power of tests for the aforementioned cases were based on the above number of replicates in which
optimization converged.

For data with 20% censored observations, the assessment of size and power of tests based on the
model in Equation (2.2) for the hypothesis Hy : 8 = 8, was not done due to the unavailability of the
survival function in closed form.

For model in Equation (2.3), size of tests for the hypothesis Hy : 6 = 6, are essentially a-level
tests when Lindley-distributed data contain 20% censored observations; the model also have sufficient
power to detect a 20% difference in the Lindley parameter value for n > 250 (Table 4).
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5. Conclusion

Results from this study suggest that size of tests of hypotheses on parameter(s) are a-level for the
generalized Lindley model in Equation (2.3), but not so for the generalized model of Equation (2.2)
for small samples when modeling non-censored, Lindley-distributed data. The former seems to have
higher power than the latter for small sample sizes in the cases investigated. For data containing
20% censored observations, generalized model in Equation (2.3) gives a—level tests and has adequate
power when n > 250.
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