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Rate of Convergence of Empirical Distributions and
Quantiles in Linear Processes with Applications to
Trimmed Mean!

Sangyeol Lee!

ABSTRACT

A ‘convergence in probability’ rate of the empirical distributions and
quantiles of linear processes is obtained. As an application of the limit
theorems, a trimmed mean for the location of the linear process is considered.
It is shown that the trimmed mean is asymptotically normal. A consistent
estimator for the asymptotic variance of the trimmed mean is provided.
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1. INTRODUCTION AND THE MAIN RESULTS

Consider the linear process

[ea]
Xj=,u+2aiz-:j_i, (1.1)

i=0
where ¢; are iid random variables with E|e;|* < oo for some a > 0 and {a;} is a
sequence of real numbers with |a;| < ¢179¢ for some ¢, ¢ > 0, whereqa > lorg > 1
according as 0 < « < 1 and @ > 1. The process in (1.1) covers a broad class of
time series models including the most popular ARMA models. In the literature,
there has been an attempt to study the rate of the empirical distributions and
quantiles. For example, Hannan and Hesse (1988) and Hesse (1990) derived a
rate of their almost sure convergence in linear processes. However, for example,
Hesse (1990, Theorem 2) only covers the process with geometrically decaying
coeflicients. Therefore, there is a need to extend to more general processes. Since
the almost sure convergence result is often beyond what one requires for statistical
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analysis, we here study a rate of the convergence in probability of the empirical
distributions and quantiles. Actually, de Wet and Venter (1974) and Lee (1995)
derived an asymptotic expansion of the trimmed mean to establish a central limit
theorem for 1.1.d. r.v.’s and linear processes using such a convergence result. Since
a strong mixing condition imposed by Lee for using the results by Babu and Singh
(1978) does not necessarily hold for linear processes (cf. Bradley, 1986), we here
adopt the mixingale approach of McLeish (1975).

Let F,(-) = F(- — i) and f, = f(- — p) denote the marginal distribution and
density of X;. For u € (0,1), let &, be the number with F(£,) = u. Let X; = X,
p, and Fy(z) = n~1/2 i I(X; < z), and &ny = 7 (u) = inf{y; F(y) > u}.
Finally, let 7 = (¢& — 1)/2, where & = min{1, &}. Here is the main result of this
article.

Theorem 1.1. Suppose that sup, f(z) < oo and n > 0. Then
n’ sup |Fy(z) - F(z)] = op(1) forall A (0,1/(2+2/n)). (1.2)
I

Theorem 1.1 particularly shows that when {a;} is exponentially decaying to 0,
the deviations of the empirical and true distributions go to 0 in probability with
rate n~* for any X arbitrarily close to 1/2.

The following is a subsidiary result of Theorem 1.1.

Corollary 1.1. Suppose that sup, f(z) < oo, K5 = infs<z<1-5 f(x) > 0 for all
0<d<1/2, andn>0. Then for every 0 < § < 1/2,

W sup e — & —op(l) forall Ae(0,1/2+2/m).  (L3)
F<u<1—6

Proof: Given e > 0, put S,(g) = {nsup, |Fp(z) — F(z)| < €}. Assume n™¢ <

§/2. On S,(e), we have that £, _,-», < &ny € &ypn—>, for all uw € [4,1 — §], and

thus P({n* SUPs<y<1—s |énu — Eul > €/Kj2} N Sn(e)) = 0. Then (1.3) is yielded

by this and the fact P(Sy(e)) — 1. O

We need the following lemma to prove Theorem 1.1.

Lemma 1.1. Let Y, 7 be independent r.v.’s and X =Y + Z. If F denotes
the distribution function of X, and if E|Z|* < 1 for some 0 < o < 1 and
sup, |F (z)| < oo, then sup, B|I(X <z) - I(Y <z)| = O((E|Z|*)V/2).
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Proof: For any b > 0, we have that
E|I(X <z)-I(Y < z)] < P(|Z] > b)+max{|F(z+b)— F(2)|,|F(z~b) - F(z)|}.
Putting b = (E|Z]%)'/?@, we obtain the lemma. O

Proof of Theorem 1.1. Let

m—1 23
aitj—iy FU (&) = P(Xpj <) and F{™(z) =n 0> 1(Xmy < ),
=0 i=1

Let ¢,0 > 0 be the real numbers such that ¢ < 1 —2X,0 > A, A +0 —n¢ < 0.
Putting m = n¢ and applying Lemma 1.1, we have that

sup B|[(X; < z) = I(Xm; < 2)] < C(BIX; = Xmg|*)M2 = O(n™™),  (1.4)

and thus

sup|F(z) — F™ (z)| = O(n ™). (1.5)
We first show that

n*sup [F{™ (2) — F(z)| = op(1). (1.6)
Let —o0 = zp < 71 < --» < 2, = o0 be the numbers such that F(z;) =

j/n?, 5 =0,...,n% By the monotonicity of F{™) and F,&"’"), we can write that
sup, |[F{™ (z) = F(™ (z)| < I + I, where

_ (m) (M) (. _ (m) (m)
I = o IAX, |[Fa™ (z5) — FY™ (25)], Iz—ognjzgﬂ(F (zj+1) — F™(z5)).

Notice that by (1.5), n* mMaxXy< j<p? |Fm™) (25) — F(z;)] = O(n~6~Y), and so
nIp < O(n~ (M) + O(n*=%) = o(1). (1.7)

To deal with I, put d;j = I(Xmi < z5) — F(m) (z;). For each n, we can find u,v
such that n = mu-+wv, 0 €< v < m. For simplicity, we assume that n = mu. Write

w1dij = D1+ + Dy, where Dy = Y14 di—1ym+k,j:k = 1,...,m. Note that
|dij| <1 and Var(Dg) < cu for some ¢ > 0. Applying Bernstein’s inequality, we
have for any 4 > 0,

L §2p2—2A~2(
P - <
(n|n ;Dk|>6)_2mexp{ 2eu £ (73 C}
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which yields n*I; = op(1). This together with (1.7) implies (1.6).

Now, in view of (1.6), it suffices to show that
n* sup | Fp(z) — F(z) — F™ (2) + FU (z)| = op(1).
Due to (1.5), we only have to verify that

IT = sup |Fo(z) — F{™(z)] = op(n™™). (1.8)

n

Write [T < I} + 115, where

Ih = max, |Fu(e;) = B (@)l Il = max, 17 (350) = B (@),
From (1.4), we have that En*IT;O(n/+*=7¢) = o(1). Since n Iy < n (21 +
I3) = op(1), (1.8) is proved. O

2. TRIMMED MEAN

Suppose that the observations Xi,..., X, are given. Let X,j,..., X, be
the corresponding order statistics. Let a and b be positive real numbers with
a+b< 1. Foru e (0,1), define g, (u) = [nu] or [nu] + 1 corresponding as nu is
an integer or not. Put r = qn(a), s = ¢o(1 — b) and v = 1 — a — b, respectively.
Define the a, b-trimmed mean as follows:

5
Xa,b = 7‘1,_1’}’_1 ZXW (21)

=7

Let
Wi =y UK < &) —a) + Xy - BXL + 61X > 615) — )},

where I; = I (¢, < X < E1-p) and & = £, + p for 0 < u < 1. In addition, set

. [a-

7]
0=p+~" zdF(x). (2.2)

{a

Theorem 2.1. Suppose that [ satisfies the conditions in Corollary 1.1 and n >
1. Then,

n
ya,b —f9=n"1 Z W, + 0p(n_2>‘) (2.3)

i=1



Rate of Convergence 439

for any A € (0,1/(2 + 2/7)), and t2(a,b) = EWE + 2550, EW\W;,1 exists. If
in addition 7%(a,b) > 0, it holds that as n — oo,

n2(X,p — 0) B N(0,7%(a,b)). (2.4)

We need two lemmas to prove Theorem 2.1. Throughout, || - ||z denotes the
L? norm, F; denotes the o-field generated by ¢, i < j, and S, = .7 ; W;. The
following lemma is a direct result of Lemma 1.1.

Lemma 2.1. Let X,Y, Z be the same r.v.’s in Lemma 1.1, and let I = ({; <
X <¢) and J = ({1 <Y < (). Suppose that F is a o-field, Z is F-measurable,
E|Z|* <1 for some 0 < a < 1, and Y is independent of F. Then under the
same condilion of Lemma 1.1, for any A > 0,

E(|XI-YJ||F] < K{I(|Z| > A) + (E|Z|*)"?* +|Z|*}, K >0.

Lemma 2.2. Under the same condilions of Theorem 2.1,
(1) |EWj4|F5)ll2 < 1, where pp = O(k7).
(2) {W;,F;} is a mizingale with iy of size -1/2 in the sense of McLeish.
(3) T (a,b) =322 _ o 7w (h) is absolutely summable, where vy, (h) = EW W\ 4.
(4) Eln " E[(Sman — Sm)?*|Fa] = 74(a,b)] = 0 as m,n — oo,

Proof: Applying Lemmas 1.1 and 2.1 with ¥ = Zf:“_loo ajej4x—; and Z =
Y2 Ejrk—t, We attain (1). Since k™7 satisfies the conditions in Definition
2.4 of McLeish, (2) is proved. (3) is an immediate result of (1). (4) is proved by
the fact that E|E(W;W,|Fy) — EW,W;| = O(:™" +j~"), which is due to Lemmas
1.1 and 2.1. 0O

Proof of Theorem 2.1. Write that )7_ Xp; = >0, XpI(6) < X3 < €7_,) +
Up1 + Ung, where Uy = Bp(I(Xny < &) — I(Xnyr > £])). Here, B, denotcs the
sum of X;’s between £ and X,, . The term U,s is analogously defined. By
Theorem 1.1 and Corollary 1.1, there exists A > 1/4, such that

nFn(€3) = (r = 1) = 0p(n' ™), Xpr =& = op(n™?), (2.5)

Thus Up1 = (nFp (&) = (r—1))&: +0p(n*~2*). Since a similar expression holds for
Ungz, (2.3) follows. The rest of the theorem follows from Lemma 2.2 and Theorem
2.6 of McLeish (1975). a
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In the remainder of this section, we estimate the asymptotic variance of the
trimed mean. Assume that ¢ = b and the density of £, is symmetric about zero.
In that case, 8 becomes u due to (2.2) and W; is rewritten as follows:

Wi =~ HE (XK < &) = 0) + Kili + (L = 7) + €1, (I(X: > &) - a)}

with I; = I(§, < X; < &1-a). Futher, from Theorem 2.1, we can write

n
Xo=Xoga=p+nt > Wi+op(n/?). (2.6)
i=1
As an estimate of 72(a) = 33°_  EW;Wi,y, one may consider 72(a) =
Yin|<hn Tn(h), where v (h) = n~! 2::]“1' WiW;ip, and {hp} is a sequence of
positive integers diverging to oo with h, = O(n®), p € (0,1/3]. However, since
n(h) are unobservable, replacing v, (h) by 4n(h) = n~! Z;:llh' W, W, IR

VVi = ’)’_I{an(I(Xi < an) — a) + (Xz - Ya,)I()(n'r' S X7. é an)
+(I(Xm‘ S Xi S an) - 'Y)Xa + an(I(Xi > an) - CL)},

we employ 772 (a) = X jn1<h, n(h).

Proof: Suppose that f satisfies the conditions in Corollary 1.1, and n > 2.
Then, 72(a) ER 72(a). O

The following is useful to prove Theorem 2.2.

Lemma 2.3. Under the condition of Theorem 2.2, 72(a) EA 72(a).

Proof: Let z, = nghn(l - J%l)EW1W1+|h|. Since by Lemma 2.2 (3), 352 _ .
|EW1W14in| < 0o, the lemma will follow if 72(a) — 7, < 0. To verify this, we set
Ui = WWiyn — EWiWiyp for A > 0. Put & = (1 = 1/(n — h))EUy pUr1p .
Then by stationarity, F(y,(h) —yn(h))? = I,(h) +II,(h), where I,(h) = n *(n—
B)(BUZ,+2 X0 €) and IT, (h) = 2n~2(n—h) P53 & 4. Since E|U 4U 4]
= O((h = 1)"") for h > I, due to (2.5), we have that maxgcp<h, [In(h)| =
O(n™'hy,). Similarly, for some K > 0, maxo<p<h, [[In(h)] < Kn™t Y2 k7" =
O(n~!). Hence, we obtain maxo<h<h, E(1n(h) = yn(h))? = O(n"'hy). Thus,
{E(r2(a) — £,)?}/? = O(n"/%hy,) — 0 as n — oco. O
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Proof of Theorem 2.2. Without loss of generality, assume that p = 0. Put
Wi = W; + R;. Tt suffices to show that n~Lh,, » 1{R? +|R;|} = op(1). Define
Hy = I(Xi < &) =0, K; = I(X; > €1-0) — 0, H, = I(X; < Xpe) —a,f; =
I(Xnr < X; € Xps), Kj =1I(Xi > Xns) — a. Now, split R; into the four terms;
R; = Ri1 + Rig+ Ri3 + Riy, where R;| = X, H; — 6,H;, Rio = (X; — X,)I; — X, I,
Ris = XpoK; — €1_oK; and Ryy = (I — ) — (I; = 1) X,

First, notice that for some XA > 1/3, 3", RZ = op(n'~*), where we have used
(2.5). This in turn implies that n™'h, 371 R% = op(nf~?) = 0p(1). Similarly,
it can be shown that n~*h, 37 R% = op(1). Next, observe that by (2.5) and
(2.6), Yi_1 R} = Op(n!~>), which asserts n=1h, 27, R% = op(1). Finally, it
is easy to see 3.7 R4 = Op(1). Thus n~th, 37 | R? = 0p(1). In a similar
fashion, we can see that n™'h, 57 |R;| = 0p(1). This completes the proof. [
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