Communications for Statistical Applications and Methods
/
v.29
no.4
/
pp.413-420
/
2022
In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.
Chemical analysis, statistical analysis and geochemical study were carried out to investigate the influence of the geology on the chemical characferistics of the mineral water in Taegu area. A simple comparision between the chemical components of the mineral water and their bedrocks indicates that the bedrock types in the catchmerit area control the chemical characteristics of the surface water. However more objective evidences for the mineral water-bedrock relationship come from the statistical analyses(cluster analysis and factor analysis). The results of the statistical analyses suggest that the bedrock type factor explains the data variation seven times as much as pollution does, which evidently indicates that the bedrock in the study area mainly control the mineral water chemistries. The results of comparision of the statistical analyses results with the mineral weathering reactions and mineral stability diagrams can be summarized as follows: 1. Plagioclase weathering to kaolinite provides SiO$_2$ , Ca$^{2+}$ and Na$^+$, and muscovite weathering to kaolinite provides K$^+$, and amphibole and mica minerals weathering to kaolinite provides F to the mineral water. Most of Ca$^{2+}$ and Mg$^{2+}$ in the mineral water are the products of carbonate mineral dissolution. SO$_4^{2-}$ may be the byproduct of sulfide oxidation. 2. The weatering of silicate mineral produces Ca-rich smectite and kaolinite, but Ca-rich smectite is unstable and will be transformed to more stable kaolinite because of the continuous dilution of the mineral water by precipitation. By Hashimoto's Mineral Balance Index, S-10 and S-12 mineral spring water were evaluated tasty and healthy water, S-9 and S-11 mineral spring water were evaluated tasty water and S-7, S-8 and S-13 mineral spring water were evaluated healthy water.
In hypothesis testing, the interpretation of a statistic obtained from the data analysis relies on a probabilistic distribution of the statistic constructed according to several statistical theories. For instance, the statistical significance of a mean difference between experimental conditions is determined according to a probabilistic distribution of the mean differences (e.g., Student's t) constructed under several theoretical assumptions for population characteristics. The present study explored the logic and advantages of random-resampling approach for analyzing event-related potentials (ERPs) where a hypothesis is tested according to the distribution of empirical statistics that is constructed based on randomly resampled dataset of real measures rather than a theoretical distribution of the statistics. To motivate ERP researchers' understanding of the random-resampling approach, the present study further introduced a specific example of data analyses where a random-permutation procedure was applied according to the random-resampling principle, as well as discussing several cautions ahead of its practical application to ERP data analyses.
Journal of the Korean Operations Research and Management Science Society
/
v.30
no.4
/
pp.15-25
/
2005
As implied by the terms of IT productivity Paradox, measuring the Information technology contribution to economic performance has been one of the challenging issues to both policy makers and business professionals. As such, diverse attempts with sophisticate analyses have been reported in the literature to analyze the effect of IT contributions. In this paper, we follow Growth Accounting Method to measure the IT contribution effect to manufacturing firm's economic performance in Korea. Various regression methods and statistical analyses are applied with fourteen years of industry Panel data. Using the Cobb-Douglas function, time lag analysis is made to understand IT effect to economic growth. Instead of capturing data from individual firm, industry level data from the National Statistics Bureau is used for IT capital, non-IT capital, and so on. Statistical analysis following the panel unit test and Panel co-integration test was performed to reveal the exact effect of IT contribution to economic performance. Empirical testing results for non-stationary nature of IT investment effect are reported as well as IT contribution to manufacturing industry's economic performance.
Communications for Statistical Applications and Methods
/
v.25
no.3
/
pp.263-274
/
2018
One of the common issues in large dataset analyses is to detect and construct homogeneous groups of objects in those datasets. This is typically done by some form of clustering technique. In this study, we present a divisive hierarchical clustering method for two monothetic characteristics of histogram data. Unlike classical data points, a histogram has internal variation of itself as well as location information. However, to find the optimal bipartition, existing divisive monothetic clustering methods for histogram data consider only location information as a monothetic characteristic and they cannot distinguish histograms with the same location but different internal variations. Thus, a divisive clustering method considering both location and internal variation of histograms is proposed in this study. The method has an advantage in interpreting clustering outcomes by providing binary questions for each split. The proposed clustering method is verified through a simulation study and applied to a large U.S. house property value dataset.
This paper studies the computer programming of statistical methods. A few computer programs are developed for * computing the basic statistics and the coefficients of process capability for raw and grouped data * drawing the frequency table and histogram * goodness of fit testing for normality with the analyses for stratifications if necessary. A special emphasis is laid on the significant digits and rounding-off for the output. A running result appears in the Appendix for a hypothetical example.
Communications for Statistical Applications and Methods
/
v.12
no.1
/
pp.241-252
/
2005
In this study we suggest that the spatial correlation structure of the brain fMRI data be used to characterize the functional connectivity of the brain. For some concussion and recovery data, we examine how the correlation structure changes from one step to another in the data analyses, which will allow us to see the effect of each analysis to the spatial correlation or the functional connectivity of the brain. This will lead us to spot the processes which cause significant changes in the spatial correlation structure of the brain. We discuss whether or not we can decompose correlation matrices in terms of its causes of variations in the data.
Proceedings of the Korea Water Resources Association Conference
/
2002.05b
/
pp.1195-1204
/
2002
The impacts of El Nino Southern Oscillation (ENSO) phenomenon on climate are widespread and extend far beyond the tropical Pacific. The phenomenon can be characterized by Southern Oscillation Index (SOI) which is derived from values of the monthly mean sea level pressure barometric difference between Tahiti and Darwin, Australia. Its best-known extreme is the El Nino event. In this study, general statistical characteristics of SOI and the data from which it is derived (i.e. mean sea level pressure data at Tahiti and Darwin) are presented as guidance when using SOI far other analyses. The characteristics include the availability of the barometric pressure data, statistics of monthly pressure data, correlation of SO intensity, frequency analysis of SOI by magnitude and by month (January-December), duration properties of SOI by run analysis.
The Journal of Information Technology and Database
/
v.6
no.2
/
pp.87-100
/
1999
This paper proposes analyses of characteristics and the technical components of Korean enterprise network. Based on a survey from professionals of Korean companies, we present statistical summaries of building blocks of hardware and software of the networks implemented in Korean companies. We also perform statistical analyses to find the relationships among the technical components and to extract major technical factors that differentiate enterprise networks by the business types and the size of the companies. We conclude that some of the technical factors are closely correlated and some of them are found to differentiate networks by the business types and the size of the companies.
Soft shores are particularly vulnerable to human exploitation; however, they exhibit a variety of habitats which provide refuge for a diversity of flora and fauna. This study describes a survey of 13 soft shores in Hong Kong with information on species diversity, sediment characteristics, shore extent, pollution threat, degree of naturalness, linkage with other ecological habitats, and degree of social/economic importance. Data collected were subjected to multivariate statistical analyses, so as to identify shores that have significant ecological status and conservation value for management purposes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.