Browse > Article
http://dx.doi.org/10.14695/KJSOS.2017.20.2.149

An Exploratory Observation of Analyzing Event-Related Potential Data on the Basis of Random-Resampling Method  

Hyun, Joo-Seok (Department of Psychology, Chung-Ang University)
Publication Information
Science of Emotion and Sensibility / v.20, no.2, 2017 , pp. 149-160 More about this Journal
Abstract
In hypothesis testing, the interpretation of a statistic obtained from the data analysis relies on a probabilistic distribution of the statistic constructed according to several statistical theories. For instance, the statistical significance of a mean difference between experimental conditions is determined according to a probabilistic distribution of the mean differences (e.g., Student's t) constructed under several theoretical assumptions for population characteristics. The present study explored the logic and advantages of random-resampling approach for analyzing event-related potentials (ERPs) where a hypothesis is tested according to the distribution of empirical statistics that is constructed based on randomly resampled dataset of real measures rather than a theoretical distribution of the statistics. To motivate ERP researchers' understanding of the random-resampling approach, the present study further introduced a specific example of data analyses where a random-permutation procedure was applied according to the random-resampling principle, as well as discussing several cautions ahead of its practical application to ERP data analyses.
Keywords
Hypothesis Testing; Random Resampling; Empirical Statistics; ERP Data Analyses;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Todman, J. B., & Dugard, P. (2001). Single-case and small-N experimental Designs: a practical guide to randomization tests. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
2 Waldrop, M. M. (2016). The chips are down for Moore's law. Nature, 530(7589), 144-147.   DOI
3 Winkler, A. M., Ridgway, G. R., Douaud, G., Nichols, T. E., & Smith, S. M. (2016). Faster permutation inference in brain imaging. NeuroImage, 141, 502- 516.   DOI
4 Woodman, G. F. (2010). A brief introduction to the use of event-related potentials (ERPs) in Studies of perception and attention. Attention, Perception & Psychophysics, 72(8), 2031-2046.   DOI
5 Agam, Y., Hyun, J. -S., Danker, J. F., Zhou, F., Kahana, M., & Sekuler, R. (2009). Early neural signature of visual short-term memory. NeuroImage, 44(2), 531-536.   DOI
6 Boik, R. J. (1987). The Fisher-Pitman permutation test: a non-robust alternative to the normal theory F-test when variances are heterogeneous. British Journal of Mathematical Statistical Psychology, 40, 26-42.   DOI
7 Anderson, N. H. (1961). Scales and statistics: Parametric and nonparametric. Psychological Bulletin, 58(4), 305-316.   DOI
8 Baum, W. M. (2005). Understanding behaviorism: Behavior, culture and evolution (2nd ed.). Malden, MA: Blackwell.
9 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Society, 57(1), 289-300.
10 Blair, R. C., & Karniski, W. (1993). Methodology: An alternative method for significance testing of waveform difference potentials. Psychophysiology, 30, 518-524.   DOI
11 Coles, M. G. H. (1989). Modern mind-brain reading: Psychophysiology, physiology and cognition. Psychophysiology, 26, 251-269.   DOI
12 Cox, D. R. (2006). Principles of statistical inferences. Cambridge, UK: Cambridge University Press.
13 Di Nocera, F., & Ferlazzo, F. (2000). Resampling approach to statistical inferences: Bootstrapping from eventrelated potentials data. Behavior Research Methods, Instruments, & Computers, 32(1), 111-119.   DOI
14 Donchin, E. (1981). Surprise!... Surprise? Psychophysiology, 18(493-5123).   DOI
15 Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. American Statistical Association, 37(1), 36-48.
16 Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analyses of event related brain potentials/ fields I: a critical tutorial review. Psychophysiology, 48, 1711-1725.   DOI
17 Ernst, M. D. (2004). Permutation methods: A basis for exact inference. Statistical Science, 19(4), 676-685.   DOI
18 Gratton, G., Coles, M., & Donchin, E. (1983). A new method for off-lone removal of ocular artifact. Electroencephalography & Clinical Neurophysiology, 55(4), 468-484.   DOI
19 Greenland, S. (1990). Randomization, Statistics, and Causal Inference. Epidemology, 1(6), 421-429.   DOI
20 Hayes, A. F. (1996). Permutation test is not distribution free. Psychological Methods, 1, 184-198.   DOI
21 Hays, W. L. (1994). Statistics. San Diego, CA: Harcourt Brace College Publishers.
22 Hyun, J. -S. (2008). The properties and measurement of N2pc component evoked by a target in visual search (시각적 탐색에서 표적에 의해 유발된 N2pc 성분의 특성 및 측정). The Korean Journal of Experimental Psychology, 20(4), 247-263.
23 Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47, 888-904.
24 Ludbrook, J., & Dudley, H. (1998). Why permutation tests are superior to t and F tests in biomedical research. American Statistician, 52(2), 127-132.
25 Kim, D.-G., Kim, H.-Y., Kim, G., Jang, P.-S., Jung, W. H., & Hyun, J.-S. (2016). Exploratory understanding of the uncanny valley phenomena based on event-related potential measurement (사건관련전위 관찰에 기초한 언캐니 밸리 현상에 대한 탐색적 이해). Science of Emotion & Sensibility, 19(1), 95-110.   DOI
26 Luck, S. J. (2005a). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.
27 Luck, S. J. (2005b). Ten simple rules for designing ERP experiments. In T. C. Handy (Ed.), Event-Related Potentials: A Methods Handbook (pp. 17-32). Cambridge, MA: MIT Press.
28 Maris, E. (2012). Statistical testing in electrophysiological studies. Psychophysiology, 49, 549-565.   DOI
29 Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience, 164, 177-190.
30 Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknifebased method for measuring LRP onset latency differences. Psychophysiology, 35(1), 99-115.   DOI
31 Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2007). Limits of event-related potential differences in tracking object processing speed. Journal of Cognitive Neuroscience, 19, 1241-1258.   DOI
32 Miller, J., Ulrich, R., & Schwartz, W. (2009). Why jackknifing yields good latency estimates. Psychophysiology, 46(2), 300-312.   DOI
33 Peterson, I. (July 27, 1991). Pick a sample, Science News, pp. 56-58.
34 Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37, 127-152.   DOI
35 Picton, T. W. (1980). The use of human event-related potentials in psychology. In P. H. V. a. I. Martin (Ed.), Techniques in Psychophysiology. New York: Wiley.
36 Rodgers, J. L. (1999). The bootstrap, the jackknife, and the randomization test: A sample taxonomy. Multivariate Behavioral Research, 34(4), 441-456.   DOI
37 Sawaki, R., Geng, J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.   DOI
38 Shin, E. (2012). Lateralized readiness potential: on the movement-related potential that uses the contrlateral organization of motor control (편측성 준비 전위 (lateralized readiness potential): 대측 통제를 이용한 운동 관련 전위에 관하여). The Korean Journal of Cognitive and Biological Psychology, 24(4), 335-355.
39 Simon, J. L. (1997). Resampling: The New Statistics. from http://www.resample.com/intro-text-online/
40 Skinner, B. F. (1953). Science and Human Behavior. London, UK: Pearson Education, Inc.
41 Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520-522.   DOI