DOI QR코드

DOI QR Code

An Exploratory Observation of Analyzing Event-Related Potential Data on the Basis of Random-Resampling Method

무선재추출법에 기초한 사건관련전위 자료분석에 대한 탐색적 고찰

  • Received : 2016.09.19
  • Accepted : 2017.03.16
  • Published : 2017.06.30

Abstract

In hypothesis testing, the interpretation of a statistic obtained from the data analysis relies on a probabilistic distribution of the statistic constructed according to several statistical theories. For instance, the statistical significance of a mean difference between experimental conditions is determined according to a probabilistic distribution of the mean differences (e.g., Student's t) constructed under several theoretical assumptions for population characteristics. The present study explored the logic and advantages of random-resampling approach for analyzing event-related potentials (ERPs) where a hypothesis is tested according to the distribution of empirical statistics that is constructed based on randomly resampled dataset of real measures rather than a theoretical distribution of the statistics. To motivate ERP researchers' understanding of the random-resampling approach, the present study further introduced a specific example of data analyses where a random-permutation procedure was applied according to the random-resampling principle, as well as discussing several cautions ahead of its practical application to ERP data analyses.

가설검증 과정에서 자료 분석 결과 산출된 통계치에 대한 해석은 몇 가지 통계학적 이론을 토대로 분석 결과 산출된 관련 통계치의 이론적 확률 분포에 의해 좌우된다. 예를 들어 실험 조건 간 측정치의 평균 차이에 대한 통계적 유의미성은 대개 전집 특성에 대한 몇 가지 이론적 가정에 기초해 구성된 해당 평균 차이값의 확률 분포(예: Student's t)에 기초해 결정된다. 본 연구는 이러한 이론적 통계치의 분포가 아닌 실측정 자료의 무선 재구성을 통해 얻어진 경험적 통계치의 분포에 기초해 가설 검증을 시도하는 무선재추출법의 기본 논리와 장점을 살펴보고 사건관련전위 분석 상황에서의 응용 가능성을 모색하였다. 더 나아가 무선 추출 원리에 기초한 무선치환법이 적용된 구체적 사례를 소개하고 ERP 자료 분석에 있어서 경험적 통계 분석 적용에 앞서 유의할 점을 살펴봄으로써 뇌파 연구자들의 무선재추출법에 대한 정확한 이해를 도모하였다.

Keywords

References

  1. Agam, Y., Hyun, J. -S., Danker, J. F., Zhou, F., Kahana, M., & Sekuler, R. (2009). Early neural signature of visual short-term memory. NeuroImage, 44(2), 531-536. https://doi.org/10.1016/j.neuroimage.2008.09.018
  2. Anderson, N. H. (1961). Scales and statistics: Parametric and nonparametric. Psychological Bulletin, 58(4), 305-316. https://doi.org/10.1037/h0042576
  3. Baum, W. M. (2005). Understanding behaviorism: Behavior, culture and evolution (2nd ed.). Malden, MA: Blackwell.
  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Society, 57(1), 289-300.
  5. Blair, R. C., & Karniski, W. (1993). Methodology: An alternative method for significance testing of waveform difference potentials. Psychophysiology, 30, 518-524. https://doi.org/10.1111/j.1469-8986.1993.tb02075.x
  6. Boik, R. J. (1987). The Fisher-Pitman permutation test: a non-robust alternative to the normal theory F-test when variances are heterogeneous. British Journal of Mathematical Statistical Psychology, 40, 26-42. https://doi.org/10.1111/j.2044-8317.1987.tb00865.x
  7. Coles, M. G. H. (1989). Modern mind-brain reading: Psychophysiology, physiology and cognition. Psychophysiology, 26, 251-269. https://doi.org/10.1111/j.1469-8986.1989.tb01916.x
  8. Cox, D. R. (2006). Principles of statistical inferences. Cambridge, UK: Cambridge University Press.
  9. Di Nocera, F., & Ferlazzo, F. (2000). Resampling approach to statistical inferences: Bootstrapping from eventrelated potentials data. Behavior Research Methods, Instruments, & Computers, 32(1), 111-119. https://doi.org/10.3758/BF03200793
  10. Donchin, E. (1981). Surprise!... Surprise? Psychophysiology, 18(493-5123). https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
  11. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. American Statistical Association, 37(1), 36-48.
  12. Ernst, M. D. (2004). Permutation methods: A basis for exact inference. Statistical Science, 19(4), 676-685. https://doi.org/10.1214/088342304000000396
  13. Gratton, G., Coles, M., & Donchin, E. (1983). A new method for off-lone removal of ocular artifact. Electroencephalography & Clinical Neurophysiology, 55(4), 468-484. https://doi.org/10.1016/0013-4694(83)90135-9
  14. Greenland, S. (1990). Randomization, Statistics, and Causal Inference. Epidemology, 1(6), 421-429. https://doi.org/10.1097/00001648-199011000-00003
  15. Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analyses of event related brain potentials/ fields I: a critical tutorial review. Psychophysiology, 48, 1711-1725. https://doi.org/10.1111/j.1469-8986.2011.01273.x
  16. Hayes, A. F. (1996). Permutation test is not distribution free. Psychological Methods, 1, 184-198. https://doi.org/10.1037/1082-989X.1.2.184
  17. Hays, W. L. (1994). Statistics. San Diego, CA: Harcourt Brace College Publishers.
  18. Hyun, J. -S. (2008). The properties and measurement of N2pc component evoked by a target in visual search (시각적 탐색에서 표적에 의해 유발된 N2pc 성분의 특성 및 측정). The Korean Journal of Experimental Psychology, 20(4), 247-263.
  19. Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47, 888-904.
  20. Kim, D.-G., Kim, H.-Y., Kim, G., Jang, P.-S., Jung, W. H., & Hyun, J.-S. (2016). Exploratory understanding of the uncanny valley phenomena based on event-related potential measurement (사건관련전위 관찰에 기초한 언캐니 밸리 현상에 대한 탐색적 이해). Science of Emotion & Sensibility, 19(1), 95-110. https://doi.org/10.14695/KJSOS.2016.19.1.95
  21. Luck, S. J. (2005a). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.
  22. Luck, S. J. (2005b). Ten simple rules for designing ERP experiments. In T. C. Handy (Ed.), Event-Related Potentials: A Methods Handbook (pp. 17-32). Cambridge, MA: MIT Press.
  23. Ludbrook, J., & Dudley, H. (1998). Why permutation tests are superior to t and F tests in biomedical research. American Statistician, 52(2), 127-132.
  24. Maris, E. (2012). Statistical testing in electrophysiological studies. Psychophysiology, 49, 549-565. https://doi.org/10.1111/j.1469-8986.2011.01320.x
  25. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience, 164, 177-190.
  26. Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknifebased method for measuring LRP onset latency differences. Psychophysiology, 35(1), 99-115. https://doi.org/10.1111/1469-8986.3510099
  27. Miller, J., Ulrich, R., & Schwartz, W. (2009). Why jackknifing yields good latency estimates. Psychophysiology, 46(2), 300-312. https://doi.org/10.1111/j.1469-8986.2008.00761.x
  28. Peterson, I. (July 27, 1991). Pick a sample, Science News, pp. 56-58.
  29. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37, 127-152. https://doi.org/10.1111/1469-8986.3720127
  30. Picton, T. W. (1980). The use of human event-related potentials in psychology. In P. H. V. a. I. Martin (Ed.), Techniques in Psychophysiology. New York: Wiley.
  31. Rodgers, J. L. (1999). The bootstrap, the jackknife, and the randomization test: A sample taxonomy. Multivariate Behavioral Research, 34(4), 441-456. https://doi.org/10.1207/S15327906MBR3404_2
  32. Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2007). Limits of event-related potential differences in tracking object processing speed. Journal of Cognitive Neuroscience, 19, 1241-1258. https://doi.org/10.1162/jocn.2007.19.8.1241
  33. Sawaki, R., Geng, J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736. https://doi.org/10.1523/JNEUROSCI.1864-12.2012
  34. Shin, E. (2012). Lateralized readiness potential: on the movement-related potential that uses the contrlateral organization of motor control (편측성 준비 전위 (lateralized readiness potential): 대측 통제를 이용한 운동 관련 전위에 관하여). The Korean Journal of Cognitive and Biological Psychology, 24(4), 335-355.
  35. Simon, J. L. (1997). Resampling: The New Statistics. from http://www.resample.com/intro-text-online/
  36. Skinner, B. F. (1953). Science and Human Behavior. London, UK: Pearson Education, Inc.
  37. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520-522. https://doi.org/10.1038/381520a0
  38. Todman, J. B., & Dugard, P. (2001). Single-case and small-N experimental Designs: a practical guide to randomization tests. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  39. Waldrop, M. M. (2016). The chips are down for Moore's law. Nature, 530(7589), 144-147. https://doi.org/10.1038/530144a
  40. Winkler, A. M., Ridgway, G. R., Douaud, G., Nichols, T. E., & Smith, S. M. (2016). Faster permutation inference in brain imaging. NeuroImage, 141, 502- 516. https://doi.org/10.1016/j.neuroimage.2016.05.068
  41. Woodman, G. F. (2010). A brief introduction to the use of event-related potentials (ERPs) in Studies of perception and attention. Attention, Perception & Psychophysics, 72(8), 2031-2046. https://doi.org/10.3758/BF03196680