• Title/Summary/Keyword: State-space Controller

Search Result 339, Processing Time 0.034 seconds

A Speed Control of A Series DC Motor Using Adaptive Fuzzy Sliding-Mode Method (적응 퍼지 슬라이딩 모드 기법을 이용한 Series DC 모터의 속도제어)

  • Kim, Do-Woo;Yang, Hai-Won;Jung, Gi-Chul;Lee, Hyo-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2292-2295
    • /
    • 2001
  • In this paper, The control problem for a series DC motor is considered to adaptive fuzzy sliding-mode control scheme. Based on a nonlinear mathematical model of a series connected DC motor, instead of the combination of a nonlinear transformation and state feedback(feedback linearization) reduces the nonlinear control design. To demonstrate its effectiveness, an experimental study of this controller is presented. Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of SMC, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce computing time considerably.

  • PDF

Corrective Control of Asynchronous Sequential Circuits with Faults from Total Ionizing Dose Effects in Space (총이온화선량에 의한 고장이 존재하는 비동기 순차 회로의 교정 제어)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1125-1131
    • /
    • 2011
  • This paper presents a control theoretic approach to realizing fault tolerance in asynchronous sequential circuits. The considered asynchronous circuit is assumed to work in space environment and is subject to faults caused by total ionizing dose (TID) effects. In our setting, TID effects cause permanent changes in state transition characteristics of the asynchronous circuit. Under a certain condition of reachability redundancy, it is possible to design a corrective controller so that the closed-loop system can maintain the normal behavior despite occurrences of TID faults. As a case study, the proposed control scheme is applied to an asynchronous arbiter implemented in FPGA.

Robust controller design for the rotational maneuver of a flexible arm (유연한 arm의 1축 회전 기동을 위한 강인성 제어기 설계)

  • 방효충;박영웅;남문경;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1322-1325
    • /
    • 1997
  • A new feedback control law design techniqed usign of-off thrusters for the rotational maneuver of a flexible arm is discussed in this study. a two state on-off thruster actuator is taken as a primary actuation device for theis study. The on-off thruster operation is emulated in conjunction with the conventioal minimum-time trackig control law. The actuator input region is divided into two separate parts ; one is constant input and the other is time varying tegion. the new control law has potential applicatioin for the relatively low frequency structure such as large flexible space structure being currently used in various space echnology areas.

  • PDF

7-Phase PMSM Motor Drive System Using Space Voltage Vector PWM (공기전압벡터 PWM을 이용한 7상 영구자석형 동기전동기의 구동 시스템)

  • Kim, H.G.;Choi, M.G.;Jeong, B.H.;Mok, H.S.;Choe, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.42-44
    • /
    • 2005
  • The motor research of pre-existing attaches importance about one and three motor of reduce torque ripple and speed control. 3-Phase PMSM Motor, which is generally used, has limited usage in high speed, due to pulsation torque and variable speed. To solve this problem it is necessary to increase invariable, pole number or the number of slots. In this paper 7-Phase PMSM Motor of Steady state analysis of Torque and Output Voltage characteristic.7-Phase modulation method with Space Voltage Vector is studied for ideal operation of controller.

  • PDF

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

A study on the compensator design of the quasi-resonant SMPS (유사공진형 SMPS의 보상기 설계에 관한 연구)

  • Lim, I.S.;Huh, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.720-725
    • /
    • 1991
  • In this thesis, the lead-lag compensator is designed to improve output characteristics of flyback zero voltage switching quasi-resonant converters. The switch and the diode are assumed ideally. And the SMPS is modelled by state equations with four operation modes. And the model for controller design is also achived by using a state space averaging method, which is continuous time average of state variables every period. The lag, the lead and the lead-lag compensator is designed the SMPS respectively. The time domain analysis and the frequency domain analysis are done for each compensated circuit. It is possible increasing the phase margin and improving the transient response by the compensators. The phase lag compensator has small overshoot comparatively. But the bandwidth is narrower than the others, so it has longest settling time. For the phase lead compensator, the response come to steady-state within short period. But the overshoot is the largest due to its large peak gain. Finally, the phase lead-lag compensator has medium characteristics in the overshoot and the settling time.

  • PDF

Vector Control Implementation of PMSM Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 영구자석 동기전동기 벡터제어 구현)

  • Lee, Yong-Seok;Lee, Dong-Min;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1084-1085
    • /
    • 2007
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy. In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. The PI controller is used for speed control and state feedback PI current control method is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Simulations and experiments were carried out to examine validity of the proposed vector control implementation.

  • PDF

Fault Diagnosis and Tolerance for Asynchronous Counters with Critical Races Caused by Total Ionizing Dose in Space (우주 방사능 누적에 의한 크리티컬 레이스가 존재하는 비동기 카운터를 위한 고장 탐지 및 극복)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Asynchronous counters, where the counter value is changed not by a synchronizing clock but by outer inputs, are used in various modern digital systems such as spaceborne electronics. In this paper, we propose a scheme of fault tolerance for asynchronous counters with critical races caused by total ionizing dose (TID) in space. As a typical design flaw of asynchronous digital circuits, critical races cause an asynchronous circuit to show non-deterministic behavior, i.e., the next stable state of a state transition is not a fixed value but may be any value of a state set. Using the corrective control scheme for asynchronous sequential machines, this paper provides an existence condition and design procedure for a state feedback controller that can invalidate the effect of critical races. We implement the proposed control system in VHDL code and conduct experiments to demonstrate that the proposed control system can overcome critical races.

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.