• Title/Summary/Keyword: State-dependent service

Search Result 52, Processing Time 0.022 seconds

ANALYSIS OF THE MMPP/G/1/K QUEUE WITH A MODIFIED STATE-DEPENDENT SERVICE RATE

  • Choi, Doo Il;Kim, Bokeun;Lim, Dae-Eun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.295-304
    • /
    • 2014
  • We analyze theMMPP/G/1/K queue with a modified state-dependent service rate. The service time of customers upon service initiation is changed if the number of customers in the system reaches a threshold. Then, the changed service time is continued until the system becomes empty completely, and this process is repeated. We analyze this system using an embedded Markov chain and a supplementary variable method, and present the queue length distributions at a customer's departure epochs and then at an arbitrary time.

The optimal system for series systems with warm standby components and a repairable service station

  • Rashad, A.M.;El-Sherbeny, M.S.;Gharieb, D.M.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • This paper deals with the reliability and availability characteristics of three different series system configurations with warm standby components and a repairable service station. The failure time of the primary and warm standby are assumed to be exponentially distributed with parameters ${\lambda}$ and ${\alpha}$ respectively. The repair time distribution of each server is also exponentially distributed with parameter ${\mu}$. The breakdown time and the repair time of the service station are also assumed exponentially distributed with parameters ${\gamma}$ and ${\beta}$ respectively. We derive the reliability dependent on time, availability dependent on time, the mean time to failure, $MTTF_i$, and the steady-state availability $A_i$(${\infty}$) for three configurations and perform comparisons. Comparisons are made for specific values of distribution parameters and of the cost of the components. The three configurations are ranked based on: $MTTF_i$, $A_i$(${\infty}$), and $C_i/B_i$ where $B_i$ is either $MTTF_i$ or $A_i$(${\infty}$).

  • PDF

A Study on State Dependent RED and Dynamic Scheduling Scheme for Real-time Internet Service (실시간 인터넷 서비스를 위한 상태 의존 RED 및 동적 스케줄링 기법에 관한 연구)

  • 유인태;홍인기;서덕영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.823-833
    • /
    • 2003
  • To satisfy the requirements of the real-time Internet services, queue management and scheduling schemes should be enhanced to accommodate the delay and jitter characteristic of them. Although the existing queue management schemes can address the congestion problems of TCP flows, they have some problems in supporting real-time services. That is, they show performance degradation when burst traffics are continuously going into the system after the queue is occupied at a predefined threshold level. In addition, under the congestion state, they show large jitter, which is not a desirable phenomenon for real-time transmissions. To resolve these problems, we propose a SDRED (State Dependent Random Early Detection) and dynamic scheduling scheme that can improve delay and jitter performances by adjusting RED parameters such as ma $x_{th}$ and $w_{q}$ according to the queue status. The SDRED is designed to adapt to the current traffic situation by adjusting the max,$_{th}$ and $w_{q}$ to four different levels. From the simulation results, we show that the SDRED decreases packet delays in a queue and has more stable jitter characteristics than the existing RED, BLUE, ARED and DSRED schemes.mes.mes.

Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates (시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석)

  • Choi, Doo-Il;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds $L_1$ and $L_2$($${\geq_-}L_1$$ ) on the buffer. If the queue length at the service initiation epoch is less than the threshold $L_1$, the service time of customers follows $S_1$ with a mean of ${\mu}_1$ and the arrival of customers follows a Poisson process with a rate of ${\lambda}_1$. When the queue length at the service initiation epoch is equal to or greater than $L_1$ and less than $L_2$, the service time is changed to $S_2$ with a mean of $${\mu}_2{\geq_-}{\mu}_1$$. The arrival rate is still ${\lambda}_1$. Finally, if the queue length at the service initiation epoch is greater than $L_2$, the arrival rate of customers are also changed to a value of $${\lambda}_2({\leq_-}{\lambda}_1)$$ and the mean of the service times is ${\mu}_2$. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.

Busy Period Analysis of an M/G/1/K Queue with the Queue-Length-Dependent Overload Control Policy (고객수 기반의 오버로드 제어 정책이 있는 M/G/1/K 대기행렬의 바쁜기간 분석)

  • Lim, Heonsang;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • We consider the busy period of an M/G/1/K queueing system with queue-length-dependent overload control policy. A variant of an oscillating control strategy that was recently analyzed by Choi and Kim (2016) is considered: two threshold values, $L_1({\leq_-}L_2)$ and $L_2({\leq_-}K)$, are assumed, and service rate and arrival rate are adjusted depending on the queue length to alleviate congestion. We investigate the busy period of an M/G/1/K queue with two overload control policies, and present the formulae to obtain the expected length of a busy period for each control policy. Based on the numerical examples, we conclude that the variability and expected value of the service time distribution have the most influence on the length of a busy period.

CSD-WRR Algorithm for Improving Fairness in Wireless Network (무선망에서 공평성 향상을 위한 CSD-WRR 알고리즘)

  • Choi, Seung-Kwon;Shin, Byung-Gon;Lee, Byung-Rok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.132-135
    • /
    • 2006
  • Recently, multimedia data service using mobile terminal has been increased according to the development of wireless network technology which can be used in an indoor or outdoor environment. However, the wireless network shares the channel and it has a high error rate because of characteristics of transmission media. Therefore, it has a lot of problems for guaranteeing QoS(Quality of Services) in various requirements. This paper suggests a CSD-WRR(Channel State Dependent-WRR) method for compensating the service rate considering the transmission deadline. Simulation results show that the suggested method outperforms the conventional WRR in the view of the deadline miss rate and fairness.

  • PDF

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

Balking Phenomenon in the $M^{[x]}/G/1$ Vacation Queue

  • Madan, Kailash C.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.491-507
    • /
    • 2002
  • We analyze a single server bulk input queue with optional server vacations under a single vacation policy and balking phenomenon. The service times of the customers as well as the vacation times of the server have been assumed to be arbitrary (general). We further assume that not all arriving batches join the system during server's vacation periods. The supplementary variable technique is employed to obtain time-dependent probability generating functions of the queue size as well as the system size in terms of their Laplace transforms. For the steady state, we obtain probability generating functions of the queue size as well as the system size, the expected number of customers and the expected waiting time of the customers in the queue as well as the system, all in explicit and closed forms. Some special cases are discussed and some known results have been derived.

Conditional sojourn time distributions in M/G/1 and G/M/1 queues under PMλ-service policy

  • Kim, Sunggon
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.443-451
    • /
    • 2018
  • $P^M_{\lambda}$-service policy is a workload dependent hysteretic policy. The policy has two service states comprised of the ordinary stage and the fast stage. An ordinary service stage is initiated by the arrival of a customer in an idle state. When the workload of the server surpasses threshold ${\lambda}$, the ordinary service stage changes to the fast service state, and it continues until the system is empty. These service stages alternate in this manner. When the cost of changing service stages is high, the hysteretic policy is more efficient than the threshold policy, where a service stage changes immediately into the other service stage at either case of the workload's surpassing or crossing down a threshold. $P^M_{\lambda}$-service policy is a modification of $P^M_{\lambda}$-policy proposed to control finite dams, and also an extension of the well-known D-policy. The distributions of the stationary workload of $P^M_{\lambda}$-service policy and its variants are studied well. However, there is no known result on the sojourn time distribution. We prove that there is a relation between the sojourn time of a customer and the first up-crossing time of the workload process over the threshold ${\lambda}$ after the arrival of the customer. Using the relation and the duality of M/G/1 and G/M/1 queues, we obtain conditional sojourn time distributions in M/G/1 and G/M/1 queues under the policy.