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Balking Phenomenon in the MX /G /1 Vacation Queue
Kailash C. Madan’

ABSTRACT

We analyze a single server bulk input queue with optional server vaca-
tions under a single vacation policy and balking phenomenon. The service
times of the customers as well as the vacation times of the server have been
assumed to be arbitrary (general). We further assume that not all arriving
batches join the system during server’s vacation periods. The supplementary
variable technique is employed to obtain time-dependent probability gener-
ating functions of the queue size as well as the system size in terms of their
Laplace transforms. For the steady state, we obtain probability generating
functions of the queue size as well as the system size, the expected number
of customers and the expected waiting time of the customers in the queue
as well as the system, all in explicit and closed forms. Some special cases
are discussed and some known results have been derived.

Keywords. Compound Poisson arrival process, Bernoulli schedule server vaca-
tions, single vacation policy, balking, general service times, general vacation
times, steady state.
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1. Introduction

A number of researchers including Levy and Yechiali [13], Fuhrman [9], Doshi
[7, 8], Keilson and Servi [10], Cramer [6], Madan [14, 15], Choi and Park [4], Tak-
agi [18, 19] and many others have studied vacation queues with different vacation
policies with single or multiple server vacations. The different vacation policies
include Bernoulli schedules, exhaustive service, generalized vacations, among oth-
ers. In the present paper, we study a batch arrival vacation queue M /G/1 with
a balking phenomenon. Batch arrival vacation queues have also been studied by
many authors including Baba [1], Rosenberg and Yechiali [17], Lee et al. [11, 12],
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Chae and Lee [3], Borthakur and Choudhury [2] and Choudhury [5]. In our sys-
tem M%)/G/1, we assume optional server vacations based on Bernoulli schedules,
which means that on completion of each service the server may take a vacation or
continue staying in the system. Under the Bernoulli schedules, it is not that the
server tosses a coin at the completion of each service and either takes a vacation
or not. Instead, this kind of policy has wider implications. Under this option,
the server is not obliged to always take a vacation (p = 1) after completing each
service or never to take a vacation (p = 0).

Rather, this flexible option may enable him to take a vacation for a preven-
tive maintenance including an overhauling of the system or being sent to take
another more important task. Queueing systems that allow the server to be on
vacation arise in many computer and communication systems. The server may
require a vacation due to lack of work, server failure, preventive maintenance or
another task being assigned to the server. Some of the applications which can
be modeled using these vacation systems are computer maintenance and testing,
CPU scheduling, priority queues, polling systems or cyclic queues.

Under multiple vacation policy, it is often assumed that on returning back
from a vacation if the server finds the system empty then he takes another vaca-
tion. But unlike this assumption of repeated vacations, we assume that whenever
the server takes a vacation, it is always a single vacation. Our other key assump-
tion is the balking phenomenon during periods of server vacations under which we
assume that not all arriving batches join the system during the server vacations.
One may encounter many such queueing situations in which batches of customers
may go back elsewhere on finding the server missing from the system. We further
assume that both, the service times of customers as well as the vacation times
of the server, have arbitrary (general) distributions. The mathematical model of
our study is briefly described in the next section.

2. The Mathematical Model

Customers arrive at the system in batches of variable size in a compound
Poisson process. Let Ac;dt (1 = 1,2,3,...) be the first order probability that
a batch of 4 customers arrives at the system during a short interval of time (%,
t +dt] where 0 < ¢; < 1and >.;°,¢ =1 and A > 0 is the mean arrival rate
of batches. Customers are provided one by one service on a ‘first come-first
served’ basis and their service time S follows a general (arbitrary) distribution
with distribution function G(s) and the density function g(s). Let u(z)dz be the
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conditional probability of completion of a service during the interval (z, z + dz],
given that the elapsed service time is z, so that

ua) = 125, )
and, therefore, .
9(s) = pls)e Jo M, (2)

As soon as the service of a customer is complete, then with probability p the
server may decide to take a vacation or with probability 1 — p he may decide to
continue to be available for the next service. The server’s vacation time V also
follows a general (arbitrary) distribution with distribution function B(v) and the
density function b(v). Let §(z)dz be the conditional probability of completion of
a vacation during the interval (z, z + dz|, given that the elapsed vacation time
is x, so that

= — 3
T—B()’ (3)
and, therefore,

b(v) = B(v)e Jo B, (4)

Next, we assume that during server’s vacation period, not all arriving batches
will join the queue. It has been assumed that during server’s vacation period an
arriving batch will join the queue with probability = and balks (leaves as soon as
it arrives) with probability 1 —=. Further, we assume that all stochastic processes
involved in the system are independent of each other.

3. Definitions and Equations

We assume that W, (z,t) is the probability that at time ¢ there are (n >
0) customers in the queue excluding one customer in service and the elapsed
time of this customer is z. Accordingly, W,(t) = fo n(z,t)dz denotes the
probability that at time ¢ there are (n > 0) customers in the queue excluding one
customer in service irrespective of the value of z. Next, we let V,,(z,¢) to be the
probability that at time ¢ there are (n > 0) customers in the queue and the server
is on vacation with elapsed vacation time z. Accordingly, V, fo (z,t)dz
denotes the probability that at time ¢ there are (n > 0) customers in the queue
and the server is on vacation irrespective of the value of z. Further, we define
P, (t) = Wy(t)+V,(t) as the probability that at time ¢ there are (n > 0) customers
in the queue irrespective of the state of the server. And finally, we let Q(¢) to be
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probability that at time £ there is no customer in the system and the server is
idle. In addition, we define the following probability generating functions (pgf’s):

Wy(z,2,t) = Z Wh(z,t)2", Wy(z,t) = Z W, (t)z"
n=0 n=0
Vy(z,2,t) = Z Val(z,t)2", Vo(z,t) = Z Va(t)2",
n=0 n=0
Py(z,t) = W,(2,t) + Vy(z,t) Z (Wi (t) + Vi(t)} 2",

ch |z| < 1. (5)

Then connecting states of the system at time ¢ 4 d¢ with those at time ¢ and
collecting all mutually exclusive cases, we obtain the following set of difference-
differential equations:

iWn(z,t)+—a—Wn(ac,t)+{/\+,u( NIW, (2, t) Z)\Cz w_i(z,t), n>1, (6)

or ot
3 0 \ B
%Wo(l',t) + EWO(J;’ t) + { + M(.’II)}W()(.Z‘,t) = 07 (7)
8 G, "
52 Ve (@) + 5 Valz,1) + (M7 + B()}Vau(z, t) ;chivn_,-(x,t), n>1, (8)
8 8
52 V0(@, 1) + 5 Vo(z. 1) + (M + B(2)} Vo, 1) = 0, (9)
2R +2QW) = (1) /0 Walo,Ou(e)ds + [ V@ 0p@)de.  (10)

Equations (6) through (10) are to be solved subject to the following boundary
conditions:

Wa(0,£) = (1 —p) / " W (@, u(e)de
o (11)
+ / Vi1 (@, B(@)de + Aens1Q(E), 1 2 1,

Wy (0, (1-p / Wi(z,t)u d:v+/ Vi(z,t)B(z)dz + A1 Q(¢), (12)



ME/G/1 Vacation Queue 495

/ Wylz, )u(z)dz, n > 0. (13)

We assume that the system starts when there is no customer in the queue
and the server is idle so that the initial conditions are

Q(0) = 1, Wa(z,0) = Vu(x,0) =0, n > 0. (14)
Further, we define the Laplace transform (LT') of a function f(¢) as
ITGO) = 1) = [ e (0, Rels) >0, (150)
0
17 (510) =s5*() - 10 (150)

4. Time-dependent PGF of the Queue Size

We take LT of equations (6) through (13), use (14), (15a), (15b) and simplify.
Thus we obtain

o .. . - .
Wi (3,5) + {5+ A+ (@)} W; (3, 5) = i_zlxciwn-i(m,s), n>1, (16)

(%Wg(m, 5) + {5+ At (@) Wiz, 5) = 0, (17)

%V( s) + {s+ Ar + B(z)}V,; (2,5) = Z,\wc, yn>1, (18)

%Vo*(x, s)+ {s + Ar + B(2)}V§ (z,8) = 0, (19)

(s + N)Q*(s) = 1+ (1~ p) /0 W (@, s)ule)de + /0 C Ve (e, 9)B@)ds,  (20)

W20, 8) = (1—p / Wy (2, ) )d:c—l—/ Vr. (2, 5)B(x)ds
’ (21)
+)‘c’n+1Q (S)7 n Z 17

W50.9) = (1=p) [ Wile,slu(o)is

/ Vi'(z, s)B(z)dz + A1 Q" (s),

Vi0.9) =p [ Wiz sule)dz, n 20 (23)
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We multiply both sides of equation (16) by 2", take summation over n from 1 to
oo and add (17) to the result and use (5) and simplify. Thus we obtain

aﬁqu*(:z:,z, s) + [s+ M1 = C(2) + p(x) } W, (7, 2,8) = 0. (24)

A similar operation on equations (18) and (19) yields

%%*(x,z,s)+[s+m1~ C(2) + B@))]Vy (2, 2,5) = 0. (25)

And yet again we perform a similar operation on (21) and (22) and once again
n (23) alone. Thus we obtain

o0 oo
2W;(0,2,5) = (1—p)/ Wiz, 2 s)p d:v+/0 Vi (z,2,5)B(z)dz

(1-p / Wi (z, s)p /0 Vo (z,s)B(z)dz  (26)
+AC(z2) )
V059 =p [ W;(z,z,s)u(md:x. (27)

Using (20), equation (26) can be re-written as

Wi 0,29 = (1-p) [ Wlezn@)s+ [ V(o598 -

+[MC(2) -1} — 5] Q"(s) +1
Now, we integrate equations (24) and (25) with respect to z and obtain
W, (z,2,8) = W;(0,2,s) exp {—[s + M1 -C(2)}]z —/0 ,u(t)dt} ,  (29)
Vi (z,2,8) = V(0,2,5)exp {~[s + Am{l — C(2)}]z — /0 ﬁ(t)dt} ,  (30)
where W (0, z,s) and V;(0, 2, s) are given by (28) and (27) respectively.

We again integrate equations (29) and (30) by parts and use (2) and (4).
Thus we obtain

Wi(z,5) = W (0,2 5) { 1- i[i?ﬁ—{lczz%(zm } , (31)

Vi (z:8) = V7 (0,2,5) { = f;[jj{i”_{g‘zi‘” } ]} » (32)
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where
G s+ M1—C(2)}] = /Oooexp{ — s+ A{1- C(z)}]x}dG(m)
B*[s + Ar{l - C(2)}] = /Ooo exp{ s+ ar{l— C’(z)}]x}dB(:c)

are the Laplace-Stieltjes Transforms of the service time and the vacation time
respectively.

Now, we multiply equation (29) and (30) by u(z) and B(z) respectively and
integrate with respect to z, use (2) and (4). Thus we obtain

/ Wi (2,2, 8)u(z)de = W0, 2,8)G* [s + M1 - C(2)}], (33)
/ Vi (z,2,8)B(z)dz = V;(0,2,8)B* [s + An{l — C(2)}]. (34)
0
Using equations (33) and (34) into (27), (28), we obtain on simplifying

V2 (0,2,8) = pW(0,2,8)G* [s FA1 - C(z)}], (35)

{z=(1=p)G"[s + M1~ C)}] }W; (0,2,5)

= V;(0,2,5)B* [s + Ar{1 ~ C(2)}] + [MC(2) — 1} — s] Q*(

(36)

Next, we substitute for V;(0, z, s) from (35) into (36), and obtain on simplifying

W;(0,2,5) = { MC(2) - 1} = 5] Q*(s) + 1}
Hz-(-pG s+ M1-C)Y (37)
—pG*[s + M1 — C(2)}] B* [s+)\7r{1—C(z)}]}.
Then using (37) into (35) we have
V3 (0,2,8) = {pG* s + M1 = CI{IMC(2) - 1} - s]Q"(s) + 1} }
—{z— (1—-p)G*[s + AM{1 — C(2)}] (38)

—pG*[s + M1 — C(2)}] B* [s + {1 = C(2)}] }
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Now, we use (37), (38) into (31}, (32) respectively and obtain
Wy (z,8) = [Ki(2,5){[MC(2) ~ 1} = s]Q"(s) + 1}]

2= (1-p)G s+ M1 - C()}] (39)
—pG* s+ M1 = C@)} B [s + M {1 - C(2)}] },

Vi(z9) = [K3(2,5)0G" [s + M1~ CN{IMC(2) - 1} = s1Q"(s) + 1}]
Hz= (=P s+ M1-C)}] (40)
—pG* [s + M1 - C(2)} B'[s + Mr{1 - C(2)} },

where
) _1-G* s+ M1 -C(2)}]
Kizs) = — 3 xi—cwp
K}(z,8) = 1-B*[s + {1l — C(2)}]

s+ {1l - C(2)}
Further, adding (39) and (40) we obtain

Pi(z,8) = W;(z,8) + Vj(2,3), (41)

Now, we have to determine the unknown probability @*(s) which appears in
the numerators of the right hand sides of (39) and (40). It is easy to prove by
Rouche’s theorem that the denominator of the right hand side of (39) or (40)
has one zero on or inside |z| = 1. Let this zero be denoted as z*. Then the
numerator of the right ha.nd side of (39) or (40) must vanish for this zero, giving
us Q*(s) = [s — A{C(z*) — 1}]7'. Substituting this value of Q*(s) into (39) and
(40) we have now completely determined the pgf’s Wy (2, s) and V;/(z,s) and, for
that matter, the pgf P;(z,s).

5. Steady State PGF of the Queue Size and the System Size

Assuming that the steady state exists, we let lim; oo Wp(t) = Wy, limy 00
Va(t) = V,, and limy_,o Q(t) = Q. Thus W,, V,, and Q are the steady state
probabilities corresponding to Wy (t), V,.(t) and Q(t) respectively and let W, (2),
V4(2) and Py(z) be the steady state pgfs of the queue size corresponding to the
time-dependent pgf’s Wy(z,t), V4(z,t) and P,(z,t) defined earlier in equation (5).
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To derive the steady state results, we shall now apply the well-known Tauberian
property
lim sf*(s) = lim f(¢), (42)
t—00

5—0

provided the limits exist. Thus we obtain from (39) and (40)
Wq(2) = lim sW (2, s)

= { 1im s[K7 (2, 9){MC(2) 1} = 5]Q"(s) + 1}] }
- [gg% {z— (1 -p)G*[s + M1 - C(2)}]
~pG*[s + M1 — C(2)}] B [s + Ar{l — C(2)}] }]

= [limski(z,5) lim s{MC(2) — 1} - s]@*(5) + 1] (43)
+[;i£% {z= (1 =p)G*[s + M1 - C(2)}]
—pG* [s + M1 — C(2)}] B* [s + {1 = C(2)}] }]

= [Ki2MC(z) - 1}Q]
+{z= (=P M1 - C()}]
—pG* M1 - CN B r{l - C()}] },

Vo(2) = lim sV’ (2, 5)

= [lim s{K3(2,5)pG" [s + M1 - C(2)}]
x{MC(2) — 1} = ]Q"(s) + 1} }
+[g% {z— (1 -p)G"[s + M1 - C(2)}]
~pG*[s+ M1 = C(2)}] B [s + M{1 - C(2)}] }]

= { lim 5K (2, 5) lim spG* [5 + {1 ~ C(2)}] (44)
x[{Mz—1) = 5} Q*(s) + 1]}
+[lim {z = (1= p)G" [s + M1 - C(2)}]

~pG*[s+ M1 - C()}] B [s + An{1 - C(2)})}]
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= {Ka(e)pG M1~ CENI Mz - 1)Q)
+{z= 1 -pG M1-C@)Y
—pG* M1 - C)] B Pr{l - Ca)} },

where

Ki(2) = lim K3 (2,5) = 1-G" M1 - 0@)]

Mi-C(»)}
) =l i (e 9 = L )
Further adding (43) and (44) we have
Fy(2)
= Wy(z) + V,(2) (45)

(K1 (2) + Ka(2)pG™ (M1 - C()}FMC(2) - 1)@
2= (1 =p)G* M1 - C(2)}] - pG* [M1 - C(2)}] B*[Mr{1 - C(2)}]

Now we shall determine Q. For that purpose, we shall use the normalizing con-
dition Py(1) + Q = 1. However, since Wy(2) in (43) and V,(z) in (44) are both
indeterminate of the zero/zero form at z = 1 and hence we use L’Hospital’s rule
on (43) and obtain on simplifying
We(1) = lim Wy(2)
z—1
B AE(S)Q (46)
"~ 1 - AE(S)E(I) — pAnE(V)E(I)

Similarly equation (44) yields

Vo(1) = lim Vo(2)
3 PAE(V)Q (47)
T 1-XE(S)E(I) - pArE(V)E(I)’

Then we use (46) and (47) in the normalizing condition Wy(1) + V4(1) + Q =1
and obtain on simplifying

1 — AE(S)E(I) — pArE(V)E(I)

T 1+ AE(S) = \E(S)E(I) + prE(V) — pArE(V)E(I)’ (48)

Q

which is the steady state probability that the server is idle.
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Note that (48) also yields the condition for the existence of the steady state.
This condition is given by

AE(S)E(I) + pAnE(V)E(I) < 1. (49)
Next, we substitute for Q from (48) into (46) and (47) and obtain
W, (1) = AE(S)
T 14 ME(S) = AE(S)E(I) + pAE(V) — pAnE(V)E(I)’
which is the steady state probability that the server is busy providing service.
V(1) = pPAE(V)
BT 14 AE(S) = AE(S)E(I) + pAE(V) — pAtE(V)E(I)’
which is the steady state probability that the server is away on vacation.
We further note that W, (1) found in equation (50) is the proportion of time
the server remains busy in the system. Therefore, the system’s utilization factor
p is also given by (50).
After substituting the value of @ from (48) into (43) and (44) we have now
completely and explicitly determined the pgf's W,(z) and V,(z) and, for that
matter, also the pgf P,(z) in (45).

Now, let Ps(z) denote the steady state probability generating function of the
system size. Then we have

(50)

(51)

Py(z) = Q4+ 2P(2), (52)
where Py(z) and @ have been obtained in (45) and (48) respectively.

6. Steady State Expected Queue Size and Expected System Size

Let L, denote the mean number of customers in the queue. Then, we have
from (45), Lq = (d/dz)Py(z), at z = 1. We note that at z = 1, Fy(z) in equation
(45) is indeterminate of the 0/0 form. Therefore, to find L,, we proceed as follows:

Let Py(z) = N(z)/D(z), where N(z) and D(z) denote the numerator and
denominator of the right hand side of (45). Then we use double differentiation
and obtain

L, = P(1) = lim %Pq(z)
i DEN() = N'2)D"(2)
ST ey %

_ D'(YN"(1) - N'(1))D"(1)
- 2{D'(1)}?
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We carry out the desired derivatives at z = 1 and after some algebra and simpli-
fication, we have

N'(1) = ME(S) + E(V)}Q, (54)
N"(1) = »? [E(I)E(S2) prE(IE(V?) + 2pE(I)E(S)E(V)] Q, (55)
D'(1) = 1 - AE(I) {E(S) + pnE(V)}, (56)
D"(1) = - ME(D)?E(S?) + pAn?{E(D}Y2E(V?) + E(I(I - 1))E(S) (57)

+prE(I(I —~ 1)E(V) + 2pAn{E(I)}2E(S)E(V) ’

where @ is given by (48) and E(S), E(S?) are respectively the first and second

moments of service time, E(V), E(V?) are respectively the first and second mo-

ments of vacation time and E(I), E(I(I — 1)) are respectively the average batch

size and the second factorial moment of the batch size of arriving customers.
Note that in the above calculations, we have used the following facts:

2
K\(1) = lim Ky (2) = E(S), K1(1) = lim K;(2) = %
K TE(I)E(V?
2(1) = lim Ky(2) = E(V), K3(1) = lim Kp(2) = %

G*[0] = 1, G¥(0) = AE(I)E(S),
G (0) = N ((B(I))*E(S*) + AE(I(I — 1)E(S),
B*[0] = 1, B (0) = ArE(I)E(V),

B*'(0) = N7%((E(I))2E(V?) + ArE(I(I - 1)E(V).

On using (54), (55), (56) and (57) into (53) we have now determined L, in
explicit and closed form. Using the values of L, from (53), we can easily find
L, the expected number of customers in the system and also W, and W, the
mean waiting time in the queue and the system respectively by Little’s formulas
L =1Ly+p, Wy= Lg/A,, where A, is the actual arrival rate of customers which
is given by A\, = A(W,(1) + Q) + AV, (1), where W,(1), V4(1) and p have already
been found.

We can easily verify that when there are no server vacations then with p = 0,
we have A\, = ), as it should be.
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7. Special Cases

Case 1 : Single arrivals in an M/G/1 vacation queue with balking during vaca-
tions. In this case we let ¢; = 1, and ¢; = 0 for i # 1. Consequently C(z) = z,
E(I) =1 and E(I(I — 1)) = 0. With these values the main results yield

_ {6 =2} 1+ p[B{A1 - 2)} 1] G {AM1 = 2)}} @

B = Ao DO = = s DAL= 1 B =)} )
1= )E(S) — pAtE(V)
=1 + pAE(V) — pArE(V)’ (59)
B AE(S)
P = I PAE(V) — prE(V) (60)
provided
AE(S) + pArE(V) < 1. (61)
Further, L, is given by (53), where
N'(1) = ME( )}Q, (62)
N"(1) = A2 {E 52 ;mrE(Vz) +2pE(S)E(V)} Q, (63)
D'(1) = 1= M{E(S +prE(V)}, (64)
D"(1) = =X*{E(S?) + pr*E(V?) + 2p7E(S)E(V)} . (65)

Case 2 : M[x]/G/l vacation queue when all arriving batches balk during vacations
(No batch joins the system). In this case we have = = 0 and hence

Kop(e) = lim LB (1= CG)Y]

I —ri-cey W)

and therefore, with these substitutions in the main results we obtain

{K1(2) + pE(V)G* M1 - C(2)}} MC(2) — 1}Q

Rale) = =GO~ O] W
~ 1 — \E(S)E(I)

Q= TIAE©) —2ES)ED) + phEVY’ (67)

- \E(S) (68)

1+ XE(S) = NE(S)E(I) + prE(V)’

provided
AE(S)E(I) < 1. (69)



504 Kailash C. Madan

Further, L, is given by (53), where

N'(1) = ME(S) + E(V)}Q, (70)
N"(1) = X\? {E E(S*) +2pE(I)E(S)E(V)} Q, (71)
D'(1) = 1 — AE(I)E(S), (72)
D"(1) = =X [ME(D}*E(S?) + E(I(I — 1))E(S)] . (73)

Case 3 : M#1/G /1 vacation queue when no arriving batch balks during vacation
(All arriving batches join at all times). In this case we have m = 1 and hence

1- B*[M1-C()}]
Ml-C(x)}

and therefore, with these substitutions in the main results we obtain

pG* A1 - C)} MC(2) - 1}Q

Ks(z) =

{Kl +K2(Z

) = )
Pe) = i it O] 51— BB D e
0 — 1 — AE(S)E(I) — pAE(V)E(I) 75)
" 1+ ME(S) - AE(S)E(I) + pAE(V) — pAE(V)E(I)’
_ AE(S) (76)
P = ITAES) - AE(SE(I) + prE(V) — pAE(V)E(I)’
provided
AE(S)E(I) + pAE(V)E(I) < 1. (77)
Further, L, is given by (53), where
N'(1) = A{E(S V)@, (78)
N"(1) = \? {E 52) +pE(I)E(V?) +2pE(I)E(S)E(V)} Q, (79)
D'(1) =1 - AE(I){E(S + pE(V))}, (80)
D"(1) = - MEDYE(S?) + pME(DYE(V?) + E(I(I - 1)) E(S) (81)

+pE(I(I - 1))E(V) + 2pM E(I)}? E(S)E(V)

Case 4 : MT1/G/1 queue with no server vacations. In this case we let p = 0 in
the main results and obtain on simplifying

(EP-cE@I-1Q

z— G* M1 - C(2)}] (82)

Pq(z) =
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1 - AE(S)E(I)

@ = TT3E®) - 2B EQ)’ (83)
~ AE(S)

P = 1+ 2E(S) = AE(S)E()’ (84)
AE(S)E(I) < 1. (85)

Also using (82) and (83) into (52) and simplifying we can find the pgf of the
system size

Py(z) = Q + ZPq(Z)
(z—1) { 1-XE(S)E(I) } (86)
C(z)}] '

T -G - 1+ ME(S) = AE(S)E(I)
Further, L, is given by (53), where
N'(1) = ME(S) + E(V)}Q, (87)
N"(1) = X {E(I)E(S*)} Q, (88)
D'(1) = 1 — AE()E(S), (89)
D"(1) = =X [ME)}E(S*) + E(I(I —1))E(S)] - (90)

Case 5 : M/G/1 queue with single arrivals and no server vacations. In this we
have C(z) = z and E(I) = 1 and E(I(I — 1)) = 0, as in case 1. With these
substitutions in the results of case 4, we obtain

[G*{A0—-2)} -1]@

B == ena—ar (O1)
Q =1-AE(S), (92)

p = AE(S), (93)
AE(S) < 1, (94)
Py(z) = Q + 2P4(2) (95)

_ (-D{1-2E(S))
Z— G*IM1-2)}

Further, L, is given by (53), where

N'(1) = ME(S) + E(V)}Q, (96)
N"(1) = M’E (52)Q, (97)
D'(1) = 1 AE(S), (98)
D"(1) = —M?E(S?%). (99)
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Using (96) to (99) into (53) and simplifying we obtain

2 2
L, = NE)

= ST BT (100)

Note that the results in (91) to (95) and (100) are all known results of the M/G/1
queue (see Medhi [16]).
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