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ABSTRACT. We analyze the MMPP/G/1/K queue with a modified state-dépetservice rate.
The service time of customers upon service initiation isxgea if the number of customers in
the system reaches a threshold. Then, the changed semigésticontinued until the system
becomes empty completely, and this process is repeated. néfgza this system using an
embedded Markov chain and a supplementary variable me#imatipresent the queue length
distributions at a customer’s departure epochs and them athétrary time.

1. INTRODUCTION

In this paper, a finite capacity queueing system with a matli§imte-dependent service
rate is analyzed. Queueing systems with finite buffers éxist wide variety of applications
such as computer systems, telecommunication networkspraaiction lines, among others.
While operating systems with a queue, in which the arrivaltha systems and the service
of customers (packets or lots) occur randomly, some cuswmay suffer long delays or be
blocked. This can finally lead to a situation in which the glelaquirements of users are not
satisfied. Possible solutions to this problem is to contrelarrival or the service rate. For the
gueueing model with queue length dependent arrival rater te Choi et al. [3]. A variable
service rate depending on the queue length consideredsipaipier operates as follows: when
the number of customers in the system exceeds the thresheldervice rate is increased to a
certain value to serve customers more quickly. The increasevice rate continues until the
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system becomes empty for the first time, and then the serateeis reduced to its original
value.

The scheme-variable service characteristics based otatiesof the system have been exten-
sively applied in real-world applications. For examplesteyns adapting service speed based
on the queue length can be found in telecommunication sgsseich as that proposed by Choi
et al. [4]. By applying a cell-discarding scheme for voicelgs in ATM (Asynchronous
Transfer Mode) networks, Choi et al. [4] analyzed G, G2 /1 queue. Also, the applica-
tions in call centers can be found in Bekker et al. [1].

For analytical approaches, Choi et al. [4] obtained arady&xpressions by means of inte-
gral representations and devised an asymptotic appraximedr the system size distribution.
Choi et al. [5] analyzed thé/* /G//1 model with queue-length dependent service times us-
ing Markov renewal theory and presented the queue lengtiibdisons including the transient
distribution at timet and its limiting distributions. Also, the virtual waitingme distribu-
tion was presented. Choi et al. [4] and Choi et al. [5] aptlynswarized previous work on
gueueing systems with queue-length dependent services.tiibese results dealt with one
threshold policy, and the two thresholds policy can be faarfdudin [6], Nishimura and Jiang
[7], Nobel and Tijms [8], Zhernovyi and Zhernowyi [9, 10]. &gfically, Zhernovyi and Zh-
ernovyi [9, 10] analyzed the finite queueing model with the thresholds policy using the
Korolyuk potential method. They gave the Laplace transféanthe distribution of the num-
ber of customers during a the busy period, the distributiorction for the busy period, the
mean duration of the busy period, and the formula for théostaty distribution of the number
of customers and other measures. Our model differs fromquswvorks in that it considers
a Markov-modulated Poisson process (MMPP) as the arrivadgss of customers. In many
realistic situations, particularly in telecommunicatigystems, there is a correlation between
the inter-arrival times of customers (or packets) and trgrade of burstiness. It requires the
use of correlated arrival models rather than models asguMarkoivan arrival streams [2].
The MMPP is used to model traffic streams with bursty charities and time correlations
between inter-arrivals. For example, traffic such as voiwk\adeo in telecommunication net-
works has these properties. We claim that our model extersl$oois ones on queues with a
state-dependent service rate with one threshold by camsidthe MMPP. The MMPP is as-
sumed as the arrival process of customers that have not besidered; this assumption can
be more suitably utilized in real-world problems such asdeinmunication systems.

The remainder of this paper is organized as follows. Se@idescribes the mathematical
model. In Section 3, queue length distributions upon deparand arbitrary epochs are pre-
sented. We first derive the queue length distribution at soousr's departure epochs using an
embedded Markov chain. Next, the queue length distribuditban arbitrary time is obtained
using a supplementary variable method. Other performamtieds, such as the loss proba-
bility and the mean queue length, are also presented. 8ettiives numerical examples and
Section 5 concludes the paper.
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2. MODEL DESCRIPTION

There are a single server and a buffer with finite capakitncluding a customer in service.
Customers arrived when the buffer is full are blocked andl [dfie customers are served by
first-come, first-served (FCFS) approach based on thewahmrder. The service times of
customers are different depending on queue length. Sgahjfiif the number of customers in
the system is less than the threshold valuat the service initiation, the customers have the
service timeS; with distribution functionG;, a mean of:; and the Laplace transfori@; (s).

If the number of customers in the system is equal to or gréladerthe threshold valuk at the
service initiation, the customers have the service titnwith distribution functionGs, a mean
of 1o, and the Laplace transfor@;(s). This service time ) of customers continues until
the system becomes empty. Then, the customers are servhd bgrice times; again until
the number of customers in the system reaches the threghdle assumes, < p1 because
the faster services are required when there are relativehe customers in the buffer.

The arrival process of customers is assumed to follow an MMBPrepresentatiof@, A).
Here, the matrix) is the infinitesimal generator matrix of an underlying Markwocess/(t)
with state spacé1,2,--- , N}. And the matrixA = diag();) is the arrival rate matrix. The
stationary probability vector of the underlying Markov proces(¢) is given by solving the
equation

TQ = 0, Te = 1,

wheree and0 are vectors of sizéV consist of all ones and zeroes, respectively. A&t) be
the number of arrivals byx during the interval0, ¢]. At this stage, we define the conditional
probabilities:

pij(n,t) =Pr{M(t) =n,J(t)=j| M(0)=0,J(0) =i}, n > 0.

Then, the matrixP(n, t) is defined asP(n, t) 2 (pi j(n,t))1<i j<N-

3. ANALYSIS

3.1. Queue length distribution at departure epochs. First, the queue length distribution at
the departure epochs of customers is considered. We teripetiied in which the service
time of customers is generated by the service thpes the underload period and the period
in which the service time of customers is generated by theicgetime S, as the overload
period. As soon as the system becomes empty, the underload jgestarted. The overload
period starts from when the number of customers in the syate@rvice initiation reaches the
thresholdL to the instant when the system becomes empty.
Now we introduce the notations:

7, = thenth customer’s departure epaeh> 1,7 = 0,
N,, = the number of customers in the system at tirpe,
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£, = 1, if the system isin the underload period at timgr
" ]2, ifthe system isin the overload period at time+,

Jn = the state of the underlying Markov process at tirpet- .

Then, the proces§(N,,, &, Jn),n > 0} form a Markov chain with finite state space in lexico-
graphic order :

{(0,1,1),---,(0,1,N),(0,2,1),--- ,(0,2,N),--- ,

(L—-1,1,1),--- ,(L—1,1,N),--- ,(L,1,1),--- ,(L,1,N),---
(L+1,2,1),--- (L+1,2,N),--- (K —-3,1,1),--- (K —3,2,N),--- ,
(K-2,1,1),-- ,(K—2,2,N),(K - 1,1,1),--- , (K — 1,2,N)}.

Note that if NV, = 0, then&,, = 1, and if N,, > L, then&,, = 2. We define the steady-state
probability of the Markov chaif (N,,, &,, J,),n > 0} as follows:

lecmj:Jgrgopr{Nn:k,fn:T,Jn:j}, 0<k<K,r=1,2,7=1,2,---,N.

Also, the vectors are defined.

Lkor = (mk,r,l) T 7$1€,7‘,N)
xy = (Th,1, Tk 2)
T = ($07$1) o 7$K71)'

Note thatrg s = 0, z3,1 = 0 for L < k£ < K. We introduce the following probability matrices:

A = / P(n,z)dG,(x),r =1,2
0
A = / P(0,t)dtAAL = (A — Q) 'AAL,
0
A= 4, A, =3 4,
k=n k=n
Also, the following matrices are introduced:

A, 0 r_ (0 4,
By <O O),O_k:_L 1, B, (0 O),k:_L,

/Al o C(AL 0N . (0 A

Dk=<8 ji) =0

and
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Then, the transition probability matrig of the Markov chain{(N,,, &, J,),n > 0} is given
by

’ ’ ’ /

Bo Bi By ... B,_; B, B

L4l K-3 Kk_2 Br-1
’ ’ ’ ’ ’ —/
CoyC1Co . Coox Cp Cpyy oo Cry  Chy  Txoy
’ / / ’ -/
0 CoCi . CooaCh y Cp o Coy Chy Troy
- : y y ) E o
Q= |oo0o0 .. & o o .. Ck,., Ok Tk i
0 0 0 .. Do D, Dy ... Dg_1_ 9 Dg_1,_1 7DK—L
00 0 .. O Do D1 .. Dx-p-3 Dk—r-2 Drx-r-1
00 0 .. O 0 0 .. D Do D3
0o 0 0 .. 0 0 0 Do Dy 22
0o 0 0 .. 0 0 0 0 Do D1

The steady-state probability vectrrof the Markov chain{(N,,, &, J,),n > 0} is given by
solving the equations:

wheree = (1,1,--- ,1)T,

3.2. Queuelength distribution at an arbitrary time. In this subsection, we derive the prob-
ability distribution of the queue length at an arbitrary¢inhet N (¢) and.J(¢) be the number of
customers in the system and the state of the underlying Mapkacess at time, respectively.
In addition,

£(t) = 1, ifthe system is in the underload period at time
~ ]2, ifthe system is in the overload period at tirhe

We define the stationary probabilities:
yn(j) = lim PAN(t) =n,J(1) = j}, 0<n<K.
Yn = (yn(l)v yn(2)> to vyn(N))
First, by the key renewal theorem, we have

yo(j) = jth component of[%xoyl(A — Q)l} ,

whereE = zo1 [(A — Q) e+ 1] e+ XMt apieps + 35 &, seps is the mean interde-
parture time of customers.

Next, we derive the probabilitieg, (n > 1) by using a supplementary variable method. Let
T andT be the elapsed and remaining service time for the customeeririce, respectively.



300 D. I. CHOI, B. KIM, AND D.-E. LIM

Furthermore, we define the stationary joint probabilitytritisition of the number of customers
in the system and the remaining service time for the custeamsgrvice:

ar(n,j,z)de = tlim P{N(t) =n,&(t) =r,J(t) = j,x < T < z + dz},
—00
n>1, r=1,2,

and the Laplace transform ef.(n, j, x)

[e.o]
ay(n,j,s) —/ e o (n,j,xr)d.
0
ay(n,s) = (ap(n,1,s), - ,a5(n,N,s)).

In order to derive the queue length distribution at an aabjttime, the number of arrivals
of customers during the elapsed service time should bermatai Thus, we also define the
following conditional probabilitys, (n, j1, jo, z)dx as follows:

B,(n, j1, j2,z)dx = lim Pr{ n arrivals of customers during, £(¢) = r,
— 00
J(t):]2,$<T§x+d$lj(f):j1}, 71207 7":1727

wheret is the service starting time of the customer serving at timéVe also define the
Laplace tranSfornﬁ: (n>j17j27 S) of /Br(nvjthvm) and matriX/Br*(n) S) with /Br*(nvjl)j27 S)
as(j1,j2)—elements:

0
6:(77‘7]‘17]‘278) _/ €_Sxﬁr(n,j1,j2,$)d$
0

Br(n,s) = (Br(n, j1, J2, 8))1<ji jo<N, T =1,2.
By conditioning the queue length at last service complegpoch before time, o (n, s)
satisfy the following equations:
Forl <n< K,

min{n,L—1}
ai(ms) == lzoBin—Ls)+ > aafiln—ks)|,
k=1

as(n,s) = % meﬁ;(n - k,s)] .
Lk=1

Using the method introduced by Choi et al. [8],(n, s) is given as follows:

1
B;«k(nvs):_ ) T:1,2,
Hr

Z AjRn—1(s) — Gy.(s)Rn(s)
k=0

whereR,,(s) = (sI-A+Q) " HA(A—sI—-Q)~1}". Substitutings: (n, s)(r = 1,2) into above
eqguations, and putting = 0, we obtain the following stationary queue length probtbgi at
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an arbitrary time. Fot < n < K,
Yn = 1 (n,0) + a3(n,0)

= % 0.1 [ i A Q=) HAA = Q) —(Q - A)THAA - Q)—l}"—l}
k=0
min{n,L—1} n—k
b o] Y AL Q- HAGM-Q) T — (@A) HAM-Q) ]
k=1 m=0
n n—k
+ Zl‘k,z { Z A%n(Q — A)—l{A(A _ Q)—l}n—k—'m —(Q - A)_l{A(A . Q)—l}n—k]] .
k=1 m=0

and
K-1
Yg =T — Z Yn-
n=0

Finally, we obtain the following performance measures gighe stationary queue length
distribution {y,,,n > 0}:
(a) The loss probability Boss):

P yKAe
loss= 7w . -
Zf:o yrAe
(b) The mean queue length:
K
M = Z 1y;e.
i=1
(c) By Little’s law, we obtain the mean waiting time in the &ms:
M
W=—oou——,
)\*(1 - HOSS)

where)\* = wAe.

4. NUMERICAL RESULTS

In this section, we present numerical results on the effeicthe modified state-dependent
service rate on the mean waiting time and loss probability.sét the capacity of the buffer to
K = 10 and the threshold value tb = 5. We assume that the arrivals of customers follow an

MMPP with
_(—q12  q12 . A1 0
©= < o1 —Q21> ’ A= <0thersO )\2> ’

andqi2(= ¢o21) = 0.1 andX2/A; = 10. The effective arrival rate* for this MMPP is given
by \* = wAe.
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To investigate the effect of the modified state dependenicgerate, we consider three cases.
For the ‘High’ and ‘Low’ cases below, queueing systems haxgdervice distributions; and
Ss.

¢ ‘without Threshold’ case: The ordinary system without #iveld values is assumed.
Its service time distribution having mean 2 is assumed tlohyper-exponential
distribution with the probability density functiopd,e=%* + (1 — p)bre~%¢, where
p= 1/3,91 = 1/4, andf, = 1.

e ‘High'’ case: S; is a hyper-exponential variable with mean Q5= 1/4,6, = 3,02 =
9/5). S; is assumed to have the same distribution of the ‘without 3wk’ case
(mean=2).

e ‘Low’ case: S; is a hyper-exponential variable with meanpl= 1/4,60, = 3/2,0, =
9/10). S; is assumed to have the same distribution of the ‘without Jtokl’ case
(mean=2).

Fig. 1 and Fig. 2 show the mean waiting time and loss proltglait a function of effective
arrival rate, respectively. These figures show that the mediing time and the loss probability
generally increase as the effective arrival rate increaBasthermore our model outperforms
the ordinary queueing system without threshold valueso Elg.1 shows that the mean waiting
times converge to certain values : (the capacity of the buffe(mean service time). Figures
3 and 4 also present the mean waiting time and the loss ptitpabiwhich all conditions are
identical except the mean of the service time distributibfwihout Threshold’ case is 4.

In Fig. 1 and Fig. 3, it is observed that the mean waiting tineeéases in the beginning but
decreases later as the effective arrival rate increasesanlbe interpreted as follows. As the
effective arrival rate increases, the mean queue lengthimtseases. When the mean queue
length is larger than a threshold value, customers are i@y ko be served by a increased
service rate. As a result, the mean waiting time decreases.

———=——— without Threshold

——o—— LowCase

meanwaiting time

High Case

FIGURE 1. Mean waiting time over th&*(effective arrival rate)
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———=——— without Threshold

loss probability

————— LowCase

High Case

FIGURE 2. Loss probability over tha*(effective arrival rate)

———=—— without Threshold

———— LowCase

mean walting time

High Case

FIGURE 3. Mean waiting time over tha*(effective arrival rate)

——=—— without Threshold

——+——— LowCase

loss probability

High Case

FIGURE 4. Loss probability over tha*(effective arrival rate)
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5. CONCLUSION

In this paper, we analyzed an MMPP/G/1/K queueing systetn guitue length-dependent
service rates. Several results including the queue lengiititaitions, loss probability and mean
queue length (mean waiting time) are presented. Howevisrrdaing the optimal thresholds
was not discussed. Determining an optimal threshold padiagh as the number of threshold
values and specified threshold values, which minimize thg-lmn average cost with consid-
eration of some reasonable cost factors can be suggestkdifior research. Holding cost per
a customer, switching-over cost and operating cost for santice mode can be considered.
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