• 제목/요약/키워드: State space model

검색결과 1,022건 처리시간 0.028초

자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계 (Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors)

  • 성상만;강기호
    • 한국항공우주학회지
    • /
    • 제34권4호
    • /
    • pp.47-52
    • /
    • 2006
  • 불규칙 혼합잡음의 등가 ARMA 모델 표현을 사용하여 자이로의 불규칙 혼합잡음을 고려하는 보조항법시스템 칼만필터 설계 방법을 제안한다. 필터 설계 절차는 먼저 보조항법 시스템에 사용되는 필터는 간접 되먹임 칼만필터임을 고려하여 등가 ARMA 모델로 표현된 자이로 불규칙 잡음의 시간 차분을 구한다. 다음으로 시간 차분된 ARMA 모델을 상태 방정식으로 표현하는데 AR과 MA 차수에 따라 두 가지로 나누어진다. 먼저 AR 차수가 큰 경우 가제어 혹은 가관측 특이형태를 사용한다. MA 차수가 큰 경우에는 몇 단계 이후의 예측치를 상태변수로 하는 상태방정식을 사용하는데, 이때 자이로 출력을 보상하는 값에 따라 다시 고차수 필터와 저차수 필터로 구분된다. 마지막으로 자이로 불규칙 잡음을 보조항법시스템 칼만필터에 포함시켜 최종적인 필터 모델을 얻는다. 시뮬레이션 결과를 통하여 제안된 고차수 및 저차수 필터 모두 혼합잡음을 백색잡음으로 간주한 기존의 필터보다 항법오차를 감소시킬 수 있음을 보임으로써 그 효용성을 제시한다.

상태.공간 방식에 의한 항공기 동특성 해석 교육 시뮬레이터 개발 (Development of the Educational Simulator for Aircraft Dynamic Characteristic Analysis with the State-Space Method)

  • 윤선주
    • 한국항공운항학회지
    • /
    • 제17권1호
    • /
    • pp.9-16
    • /
    • 2009
  • The analysis of an aircraft flight dynamics is recently very convenient because of the introduction of state-space method and a well-developed package software. The representation of a dynamic system is described as a simple form of matrix calculation and the unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system with state-space method. And this analysis can be simplified with the specific functions of a package software and it is very simplified to execute the simulation of the dynamic characteristics for an aircraft model with an interactive graphical treatment. The purpose of this study is to develope an educational flight simulator for the students who need to analyze the dynamic characteristics of an aircraft that is primarily to execute the simulation for the analysis of the transient response and frequency response of an aircraft stability. Furthermore the dynamic characteristics of an aircraft motion is set up as dynamical animation tool for the control response on 3-axis motions of an aircraft.

  • PDF

자기부상열차-가이드웨이 통합 시스템의 동적 특성 (Dynamic Response of Coupled Maglev Train and Guideway System)

  • 공은호;강부병;나성수
    • 한국소음진동공학회논문집
    • /
    • 제21권2호
    • /
    • pp.137-145
    • /
    • 2011
  • This study is proposed to develop a numerical interaction model of the magnetically levitated(maglev) train and guideway. For this purpose, equation of motion for 6-DOF vehicle model, EMS, guideway and guideway irregularity are derived as the state-space equation. In order to solve the state space equations, the present work was performed via matlab simulation using Runge-Kutta method. Through the simulation, the effect of dynamic response of maglev system to different vehicle speeds, guideway rigidity(EI) and masses is investigated.

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

Impedance-Based Stability Analysis of DC-DC Boost Converters Using Harmonic State Space Model

  • Park, Bumsu;Heryanto, Nur A.;Lee, Dong-Choon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.255-261
    • /
    • 2021
  • This paper proposes impedance-based stability analysis of DC-DC boost converters, where a harmonic state space (HSS) modeling technique is used. At first, the HSS model of the boost converter is developed. Then, the closed-loop output impedance of the converter is derived in frequency domain using small signal modeling including frequency couplings, where harmonic transfer function (HTF) matrices of the open-loop output impedance, the duty-to-output, and the voltage controller are involved. The frequency response of the output impedance reveals a resonance frequency at low frequency region and frequency couplings at sidebands of switching frequency which agree with the simulation and experimental result.

State estimation based on fuzzy state transition model

  • Hanazaki, Izumi;Saguchi, Shinichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.18-23
    • /
    • 1993
  • In this paper, we attempt to estimate the state of a finite state system. In such system, we can observe time series data which has some significant behaviors corresponding to its system states. The behavior is characterized by feature parameters extracted from time series. Our thought is that the system output time series data is expressed as a sequence of behavior patterns which are represented by clusters in feature parameters space. An algorithm jointing fuzzy clustering to fuzzy finite state transition model is suggested.

  • PDF

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

자원복원력 개념을 적용한 사전확률분포 및 상태공간 잉여생산 평가모델: 살오징어(Todarodes pacificus) 개체군 자원평가 (A State-space Production Assessment Model with a Joint Prior Based on Population Resilience: Illustration with the Common Squid Todarodes pacificus Stock)

  • 김진우;현상윤;윤상철
    • 한국수산과학회지
    • /
    • 제55권2호
    • /
    • pp.183-188
    • /
    • 2022
  • It is a difficult task to estimate parameters in even a simple stock assessment model such as a surplus production model, using only data about temporal catch-per-unit-effort (CPUE) (or survey index) and fishery yields. Such difficulty is exacerbated when time-varying parameters are treated as random effects (aka state variables). To overcome the difficulty, previous studies incorporated somewhat subjective assumptions (e.g., B1=K) or informative priors of parameters. A key is how to build an objective joint prior of parameters, reducing subjectivity. Given the limited data on temporal CPUEs and fishery yields from 1999-2020 for common squid Todarodes pacificus, we built a joint prior of only two parameters, intrinsic growth rate (r) and carrying capacity (K), based on the resilience level of the population (Froese et al., 2017), and used a Bayesian state-space production assessment model. We used template model builder (TMB), a R package for implementing the assessment model, and estimating all parameters in the model. The predicted annual biomass was in the range of 0.76×106 to 4.06×106 MT, the estimated MSY was 0.13×106 MT, the estimated r was 0.24, and the estimated K was 2.10×106 MT.

쓰레기 소각플랜트의 상태공간모델 규명에 관한 연구 (A Study on Identification of State-Space Model for Refuse Incineration Plant)

  • 황이철;전충환;이진걸
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.354-362
    • /
    • 2000
  • This paper identifies a discrete-time linear combustion model of Refuse Incineration Plant(RIP) which characterizes steam generation quantity, where the RIP is considered as a MIMO system with thirteen-inputs and one-output. The structure of RIP model is described as an ARX model which are analytically obtained from the combustion dynamics. Furthermore, using the Instrumental Variable(IV) identification algorithm, model structure and unknown parameters are identified from experimental input-output data sets, In result, it is shown that the identified ARX model well approximates the input-output combustion characteristics given by experimental data sets.

DEVCS 모델을 사용한 심근 활성화과정의 시뮬레이션 (A Simulation of the Myocardium Activation Process using the Discrete Event Cell Space Model)

  • 김광년;정동근;김기련;최병철;이정태;전계록
    • 한국시뮬레이션학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-16
    • /
    • 2004
  • The modelling and simulation of the activation process for the heart system is meaningful to understand special excitatory and conductive system in the heart and to study cardiac functions because the heart activation conducts through this system. This thesis proposes two dimensional cellular automaton(CA) model for the activation process of the myocardium and conducted simulation by means of discrete time and discrete event algorithm. In the model, cells are classified into anatomically similar characteristic parts of the heart and each of cells has a set of cells with preassigned properties. Each cell in this model has state variables to represent the state of the cell and has some state transition rules to change values of state variables executed by state transition function. The state transition rule is simple as follows. First, the myocardium cell at rest stay in passive state. Second, if any one of neighborhood cell in the myocardium cell is active state then the state is change from passive to active state. Third, if cell's state is an active then automatically go to the refractory state after activation phase. Four, if cell's state is refractory then automatically go to the passive state after refractory phase. These state transition is processed repeatedly in all cells through the termination of simulation.

  • PDF