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Abstract
This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated mov-

ing average (ARIMA) models that are commonly used to forecast time series data. The combined model is
constructed through an innovational state space model based on the level variable instead of the differenced vari-
able, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the
model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated
by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric
Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their
root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined
model outperforms the competing models.
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1. Introduction

The most prevalent methods for analyzing and forecasting time series data are exponential smoothing
(ETS) and autoregressive integrated moving average (ARIMA) models. Since the ETS model was
combined with the state space model (SSM), its development has begun to accelerate further. For
details of the existing ETS models, see Gardner (1985, 2006) and Hyndman et al. (2008). The Box-
Jenkins’ ARIMA model has become the most standard time series analysis model since Box and
Jenkins (1976).

Recently, a lot of efforts has been made to upgrade the forecasting performances of the ARIMA
and ETS models. For example, there are extensions to vector forms or the introduction of time-varying
coefficients such as Seong (2020) and Campagnoli et al. (2009). The most successful effort may be
the ensemble or combined models that can be classified into three types.

The first type is to independently fit each individual model and combine them only in the forecast
step by using a combination technique such as a mean or median. Among others, Lee and Seong
(2022) consider univariate time series models, which are well known in the field of forecasting, to
study the forecasting performances of their simple combinations.

The second type is to complement some models with others, what is called the sequential ap-
proach. For example, we can consider the ETS model with ARIMA residuals (errors). Taylor (2003)
showed that the forecasting performance is improved by fitting the AR(1) model to the residuals in
the ETS model. As an extended form, De Livera et al. (2011) developed a Trigonometric Box–Cox
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Table 1: The main exponential smoothing models

Trend component Seasonal component
N (None) A (Additive) M (Multiplicative)

N (None) N, N N, A N, M
A (Additive) A, N A, A A, M

Ad (Additive damped) Ad , N Ad , A Ad , M
M (Multiplicative) M, N M, A M, M

Md (Multiplicative damped) Md , N Md , A Md , M

ARMA trend seasonal (TBATS) model which consists of ETS components, a Fourier term and ARMA
errors based on the Box-Cox transformed time series.

The last type considers a sort of model combination from the model building stage. A representa-
tive tool that makes it possible is the SSM. Further, the SSM with a single source of error (SSOE) is
more convenient to use than with multiple sources of error (MSOE). See Hyndman et al. (2002, 2008)
for details. In this context, we investigate, the ETS+ARIMA model, which is based on the SSM with
the SSOE, that combines the two models and estimates them simultaneously. We explicitly describe
the model setup and compare its forecasting performance with that of the existing methods by using
two real data sets.

The structure of this paper is as follows. In Section 2, we introduce the innovations SSM with
SSOE and represent ETS and ARIMA models with the SSM. In Section 3, we define the ETS+ARIMA
model based on the SSM. In Section 4, we compare the forecasting performance of the ETS+ARIMA
model with that of the existing forecast models. Section 5 presents the conclusion.

2. ETS and ARIMA by the SSM

The SSM consists of measurement and transition equations as follows:

yt = w(vt−l) + r(vt−l)εt,

vt = f (vt−l) + g(vt−l)εt,
(2.1)

where vt is the state vector, containing the time series components, such as level, trend and seasonal;
l is a lags vector; w(·) is a measurement function; r(·) is an error function; f (·) is a transition function;
g(·) is a persistence function; and the error term εt follows the normal distribution with mean zero and
variance σ2. Now we represent ETS and ARIMA models in the SSM form of Equation (2.1).

2.1. ETS model

The ETS model analyzes time series data using the three time series components: Error, trend, and
seasonal. The fundamental models can be classified into the 15 forms shown in Table 1, depending on
the combination of trend and seasonal components. As the error component has two types of additive
or multiplicative errors, we can consider a total of 30 models.

In Table 1, the alphabetic symbols, A, Ad, M, and Md, indicate the additive, additive-damped,
multiplicative, and multiplicative-damped trend components, respectively. N denotes the case where
the trend or seasonal component is absent. Usually, we label the ETS model as ETS(*,*,*), which
includes the alphabetic symbols between the parentheses that indicate error, trend, and seasonal com-
ponents in order. For example, ETS (A,A,A) denotes that all three components are additively linked
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and its model equation for time series yt is expressed as follows:

yt = `t−1 + bt−1 + st−m + εt,

`t = `t−1 + bt−1 + αεt,

bt = bt−1 + βεt,

st = st−m + γεt,

(2.2)

where `t, bt, and st denote the level, trend, and seasonal components, respectively; m is the seasonal
period; and α, β, and γ are the smoothing constants. φbt may be used instead of bt to dampen the trend
where φ is a damping parameter. These equations can now be expressed in the SSM form of equation
(2.1):

yt = w′vt−l + εt,

vt = F vt−l + gεt,
(2.3)

where

w =

111
 , F =

1 1 0
0 1 0
0 0 1

 , g =

αβ
γ

 , vt =

`t

bt

st

 , vt−l =

`t−1
bt−1
st−m

 , l =

1
1
m

 . (2.4)

ETS(M,M,M), the pure multiplicative versions of ETS(A,A,A), can be formulated using natural
logarithms in the following way:

log yt = w′log(vt−l) + log(1 + εt),
log vt = F log(vt−l) + log(1k + gεt),

(2.5)

where 1k = (1, 1, 1)′ is the vector of ones, containing k elements (number of components in the model).
For more details, see Hyndman et al. (2008) and Svetunkov (2022a).

2.2. ARIMA model

The SSM representation for the ARIMA model is constructed through the level variable yt but not the
differenced variable (1 − B)yt for a lag operator B with Bkyt = yt−k.

First of all, the variable yt for ARIMA(p, d, q)(P,D,Q)m is expressed as follows:

yt =

K∑
j=1

η jyt− j +

K∑
j=1

θ jεt− j + εt, (2.6)

where η j and θ j are coefficients for AR and MA polynomials, respectively. K is the highest polynomial
order calculated by K = max(p + d + (P + D)m, q + Qm). For example, if the MA order is greater
than the AR order in the maximum arguments, η j = 0 when j > p + d + (P + D)m. In the opposite
situation, θ j = 0 when j > q + Qm. Then, we obtain the measurement equation:

yt =

K∑
j=1

v j,t− j + εt, (2.7)

vi,t−i = ηiyt−i + θiεt−i. (2.8)
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Replacing yt−i of (2.8) by yt−i =
∑K

j=1 v j,t− j−i + εt−i, we can obtain the transition equation for i =

1, 2, . . . ,K as:

vi,t−i = ηi

K∑
j=1

v j,t− j−i + (ηi + θi)εt−i. (2.9)

For example, ARIMA(1,1,2) for a nonseasonal time series yt with P = D = Q = 0 can be
expressed in the SSM form:

yt = v1,t−1 + v2,t−2 + εt,

v1,t = (1 + η1)(v1,t−1 + v2,t−2) + (1 + η1 + θ1)εt,

v2,t = −η1(v1,t−1 + v2,t−2) + (−η1 + θ2)εt.

(2.10)

The matrix form, F, w, g, vt, and the lags vector l can be defined as follows:

F =

(
1 + η1
−η1

)
, w =

(
1
1

)
, g =

(
1 + η1 + θ1
−η1 + θ2

)
, vt =

(
v1,t
v2,t

)
, l =

(
1
2

)
. (2.11)

Similar to the ETS model, the SSM representation for a multiplicative ARIMA model can be
expressed by using natural logarithms as follows:

log yt =

K∑
j=1

log v j,t− j + log(1 + εt),

log vi,t = ηi

K∑
j=1

log v j,t− j + (ηi + θi)log(1 + εt) for i = 1, 2, . . . ,K.

(2.12)

This multiplicative model is called the log ARIMA model.

3. The ETS+ARIMA model

3.1. The SSM representation

We now formulate the ETS+ARIMA model in the SSM. When the error is additive, the model can be
expressed as follows:

yt = w′EvE,t−lE + w′AvA,t−lA + εt,

vE,t = FEvE,t−lE + gEεt,

vA,t = FAvA,t−lA + gAεt,

(3.1)

where the subscripts ‘E’ and ‘A’ correspond to the ETS or ARIMA models, respectively. This model
simultaneously estimates the two model equations in contrast to the existing sequential approach such
as the ETS model with ARIMA errors.

We examine the ETS(A,N,A)+ARIMA(2,0,0) model as an example of an ETS+ARIMA model.
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The model equation can be expressed as follows:

yt = `t−1 + st−m + v1,t−1 + v2,t−2 + εt,

`t = `t−1 + αεt,

st = st−m + γεt,

v1,t = φ1v1,t−1 + φ1v2,t−2 + φ1εt,

v2,t = φ2v1,t−1 + φ2v2,t−2 + φ2εt.

(3.2)

It is rewritten in the matrix form of Equation (2.3) where

w =


1
1
1
1

 , F =


1 0 0 0
0 1 0 0
0 0 φ1 φ1
0 0 φ2 φ2

 , g =


α
γ
φ1
φ2

 , vt =


`t

st

v1,t
v2,t

 , vt−l =


`t−1
st−m

v1,t−1
v2,t−2

 , l =


1
m
1
2

 . (3.3)

If the error is multiplicative, the model is expressed as follows:

log yt = w′Elog vE,t−lE + w′Alog vA,t−lA + log(1 + εt),
log vE,t = FElog vE,t−lE + log(1k + gEεt),
log vA,t = FAlog vA,t−lA + gAlog(1 + εt).

(3.4)

We note that these SSM representations make it easy to combine ETS and ARIMA. This is also
true for the estimation of parameters, which will be discussed in Section 3.3. However, if we consider
an ETS model with ARIMA errors, which, for example, has the following model equation, it will
make model identification and estimation much more difficult.

yt = `t−1 + bt−1 + st−m + ηt,

`t = `t−1 + bt−1 + αεt,

bt = bt−1 + βεt,

st = st−m + γεt,

(3.5)

where ηt denotes ARIMA(p, d, q)(P,D,Q)m errors:

φ(B)ΦP (Bm) (1 − B)d (1 − Bm)D ηt = θ(B)ΘQ (Bm) εt,

and where φ(B) and ΦP(Bm) denote nonseasonal and seasonal AR polynomials, respectively, and θ(B)
and ΘQ(Bm) denote nonseasonal and seasonal MA polynomials, respectively.

3.2. Identifiability of ETS+ARIMA

The ETS+ARIMA models should be treated with care in that the ETS and ARIMA models may
duplicate each other in some cases. For example, when we look at the combination of ETS(A,N,N)
and ARIMA(0,1,1), the model is defined as follows:

yt = `t−1 + v1,t−1 + εt,

`t = `t−1 + αεt,

v1,t = v1,t−1 + (1 + θ1)εt.

(3.6)
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However, the model does not have unique parameters and thus is unidentifiable because it is indistin-
guishable from a model where α∗ = α − c and θ∗1 = θ1 + c for arbitrary constant c are substituted for
α and θ1, respectively.

As a general recommendation, Svetunkov (2022a) proposes a short list of guidelines to avoid
unreasonable models that cannot be identified.

(1) Use ARIMA(0, 1, q) if q > 1 or use ETS(A, N, N) if q ≤ 1 in modeling ETS(A, N, N)+ARIMA(0,
1, q).

(2) Use ARIMA(0, 2, q) if q > 2 or use ETS(A, A, N) if q ≤ 2 in modeling ETS(A, A, N)+ARIMA(0,
2, q).

(3) Use ARIMA(p, 1, q) when either p > 1 or q > 2, or use ETS(A, Ad, N) when p ≤ 1 and q ≤ 2 in
modeling ETS(A, Ad, N)+ARIMA(p, 1, q).

(4) Avoid using ETS(M, N, N)+log ARIMA(0, 1, 1).

(5) Avoid using ETS(M, M, N)+log ARIMA(0, 2, 2).

(6) Avoid using ETS(M, Md, N)+log ARIMA(1, 1, 2).

The three models mentioned in points (4) through (6) above are referred to as potentially unidentifiable
combinations. It is also known that mixing additive ETS with multiplicative ARIMA or multiplicative
ETS with additive ARIMA does not make sense from the modeling point of view.

To increase the identifiability of the model, the roles of ETS and ARIMA can be separated. In
other words, a model (i.e., ETS with ARMA errors) could be constructed so that the ETS model part
explains the non-stationarity and the ARMA part takes care of the stationarity of the remainder. For
example, De Livera et al. (2011)’s TBATS model utilizes this concept. The ETS+ARIMA model
considered in this study does not separate the roles for non-stationarity and stationarity. This is be-
cause the ETS and ARIMA models treat non-stationarity differently. Therefore, it would be better for
ETS and ARIMA to complement each other in their roles for non-stationarity, especially if the overlap
mentioned in Section 3.2 can be avoided. In other words, it is reasonable to view the meaning of “+”
in the ETS+ARIMA model as an ensemble of the two models rather than the separation of roles.

3.3. Estimation and model selection

We can consider maximum likelihood estimation (MLE) for parameters depending on the distribu-
tional assumption. When the error is additive with εt ∼ N(0, σ2), the log likelihood for y1, . . . , yT is
expressed by

logL = −
T
2

log
(
2πσ2

)
−

1
2

T∑
t=1

ε2
t

σ2 . (3.7)

Then, σ̂2 = (1/T )
∑T

t=1 e2
t for residuals et. However, when the error is multiplicative, the log likelihood

is expressed by

logL = −
T
2

log
(
2πσ2

)
−

1
2

T∑
t=1

ε2
t

σ2 −

T∑
t=1

log
∣∣∣µy,t

∣∣∣, (3.8)
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Figure 1: Time series plot for monthly PM10 in Jung-gu, Seoul.

where yt = µy,t(1 + εt).
The basic idea underlying ETS+ARIMA components selection is to regard ARIMA as an addition

to ETS in the framework. This means that we can do model selection in the following steps:

Step (1): Select ETS components by using y1, . . . , yT ,

Step (2): Extract Akaike information criterion (AIC) and residuals of the best ETS model in Step (1),

Step (3): Calculate the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
based on the residuals of Step (2), and create plausible candidate ARIMA models by using
the ACF and PACF. For automatic modelling, we can use the Hyndman-Khandakar algo-
rithm in Hyndman et al. (2002).

Step (4): Fit one suitable model among the candidates in Step (3) to the residuals in Step (2),

Step (5): If AIC of the current ETS+ARIMA model is lower than that in Step (2), go to Step (4).
Otherwise, go to Step (6),

Step (6): As the final model, estimate the model with the lowest AIC among the models fitted from
Steps (4) to (5).

Since the above model selection steps are to fit ETS first, and then consider ARIMA for the
residuals, the initial values of the ETS components (level, trend and seasonal) required in Step (1)
can be obtained in the same way as in the pure ETS model. For details, see Hyndman et al. (2008).
Therefore, Steps (4) to (5) can be understood as a procedure of iteratively finding the order of the
appropriate ARIMA model. Still, there may be various ways to construct an ETS+ARIMA model
using with different sequences between ETS and ARIMA selections. Svetunkov (2022a) suggests
that starting with ETS and then selecting ARIMA orders produce a robust forecasting model.
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Figure 2: Time series plot for Canadian annual lynx capture.

4. Performance evaluation for ETS+ARIMA

We fit the ETS+ARIMA models to two real data sets to evaluate its forecasting performance. The first
data is the monthly particulate matter concentration (PM10) series of Jung-gu, Seoul obtained from
the national statistical portal (https://kosis.kr/index/index.do). The data period is from April 2001 to
June 2022 with 267 observations, and the training data and test data are divided on the basis of before
and after June 2022. The second data is the annual Canadian lynx capture series from 1821 to 1934,
with 114 observations. The test data is from 1925. We note that this series is non-seasonal time series
but has a cycle of about 9 or 10 years. This data is available from R package ‘forecast’.

4.1. Monthly PM10

The time series plot for PM10 is shown in Figure 1 where there was no trend of increasing or decreas-
ing to a certain level, except for the rise from October 2001 to June 2002. In the figure, we observe
that there is a distinct seasonal period with m = 12 and the PM10 concentrations are high in every
March and April.

4.2. Canadian annual lynx capture

Figure 2 shows the time series plot for the annual lynx capture in Canada. From the ranges 1820–1830,
1860–1870, and 1900–1910, the peak (highest value) of the capture was approximately 7,000; how-
ever, there was no tendency to increase or decrease to a specific level. It is interesting that, instead of
seasonal period, there is a cycle repeating approximately every 9 to 10 years.



Forecasting with ETS+ARIMA 151

Figure 3: Forecasts plot for PM10.

Table 2: Comparison of forecasting accuracies for PM10

Models RMSE MAPE
ETS(A,N,M) 12.967 23.803

ARIMA(0,1,1)(0,1,1)12 13.524 24.208
TBATS 12.896 24.219

ETS(A,N,M)+ARIMA(0,0,16) 12.711 23.670
ETS(A,N,M)+ARIMA(20,0,0) 12.454 23.944

4.3. Evaluation of forecasting performance

In this section, we compare the forecasting performances of ETS+ARIMA models with that of the
existing models: ETS, ARIMA, and TBATS. ETS+ARIMA model is fitted by using the adam() func-
tion in the smooth package (Svetunkov, 2017; 2022b) of R, ETS by ets(), ARIMA by auto.arima(),
and TBATS by tbats() functions in the forecast package of R (Hyndman et al., 2023). To compute
forecasting accuracies, we use two common measures. The first is the mean absolute percentage error
(MAPE) shown below:

MAPE =
1
h

h∑
j=1

∣∣∣yT+ j − ŷT+ j

∣∣∣∣∣∣yT+ j

∣∣∣ , (4.1)

where T is the forecast origin and h is the forecast horizon. MAPE is the most widely used measure
in evaluating the forecasting accuracy. It is an efficient measure when all the time series data are far
from zero, but otherwise, it is likely to distort the overall error rate. Thus, the second measure is the
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Figure 4: Forecasts plot for lynx data.

root-mean-square error (RMSE) shown below:

RMSE =

√√√√√ h∑
j=1

(
yT+ j − ŷT+ j

)2

h
. (4.2)

Using RMSE makes interpretation easier by converting error indicators into units similar to the actual
values. However, it is sensitive to outliers because of its scale-dependency.

4.3.1. Performances for PM10 series

To estimate the order of the ETS+ARIMA model from the PM10 series in Jung-gu, Seoul, ETS(A,N,M)
is suitable for the ETS component and ARIMA(0,0,16) or ARIMA(20,0,0) is suitable through the
PACF and ACF of the residuals. We fitted two ETS+ARIMA models to examine the robustness of the
model. The competing models, ETS and ARIMA, are fitted into ETS(A,N,M) and ARIMA(0, 1, 1)(0, 1, 1)12,
respectively. The TBATS model is fitted with MA(1) errors and two Fourier-like seasonal terms for
the monthly period without a Box-Cox transformation.

Figure 3 shows the true values (bold solid line) and 12-month-ahead forecasts of the three com-
peting models and two ETS+ARIMA models. In Table 2, we compute two accuracy measures for the
forecasting performance. The forecasting superiority may be indistinguishable through the figure, but
when comparing RMSE and MAPE from the table, the superiority of ETS+ARIMA is clearly visible.

It seems that all kinds of forecasts overall do not fit the true values well; especially from mid-2020
to mid-2021. The forecast (two-dashed line) by the ARIMA model is relatively under-estimated.
On the other hand, four models (two ETS+ARIMAs, ETS and TBATS) with elements of ETS show
forecasts with very similar values. In conclusion, looking at the RMSE and MAPE values in Table 2,
it is clear that two ETS+ARIMAs show the best forecasting performance.
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Table 3: Comparison of forecasting accuracies for lynx series

Models RMSE MAPE
ETS 1290.011 136.880

ARIMA 645.582 35.045
TBATS 1433.702 154.509

ETS(M,N,N)+ARIMA(8,0,0) 545.624 25.600
ETS(M,N,N)+ARIMA(3,0,0) 945.228 41.946

4.3.2. Performances for lynx series

To estimate the order of the ETS+ARIMA model in Canada’s annual lynx capture series, ETS(M,N,N)
is fitted for the ETS component and ARIMA(8,0,0) or ARIMA(3,0,0) is fitted through the residuals.
The competing models used were ETS(M, N, N), ARIMA(8,0,0) and TBATS without seasonality (i.e.,
BATS model). Note that all three competing models were fitted as non-seasonal models because the
lynx series has no seasonality.

Figure 4 shows the true values and 10-year-ahead forecasts of the three competing models and two
ETS+ARIMA models. In Table 3, we compute two accuracy measures for forecasting performance.

The forecasting superiority is distinguishable from both the figure and the table where the su-
periority of ETS+ARIMA is clear, even if the ARIMA model shows the second-best performance.
Interestingly, the ETS and TBATS models do not follow the characteristics of the cycle shown by the
true values and only show horizontal forecasts. The ETS+ARIMA models fit the cycle of the time
series well. This is a result that was not observed in the seasonal time series, such as PM10 data. In
other words, it can be seen as evidence showing the potential of the ETS+ARIMA model’s excellent
forecasting performance by specializing in stationary time series with cycles.

5. Conclusion

In this paper, we introduce the ETS+ARIMA model, which combines the two models simultaneously
but not combining them sequentially. In addition, we evaluate the forecasting performance of the
model by applying it to real data sets: Seasonal and cyclic time series. The results of the evaluation
show the ETS+ARIMA model having better forecasting performances than the competing models. In
particular, the model shows excellent forecasting performance in stationary time series with cycles.
For further studies, it is necessary to investigate forecasting performances for purely non-seasonal or
multivariate time series.
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