• Title/Summary/Keyword: State space equation model

Search Result 145, Processing Time 0.025 seconds

The Analysis of the optimal Control problem for the Singular System with the Generalized State Space Model (일반화된 상태모델로 주어진 싱귤라 시스템의 최적제어문제 해석)

  • Kwae-Hi lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.301-304
    • /
    • 1987
  • The Optimal Control Problems for the singular system with the Generalized state space model are considered. It is shown that when the system is singular, the dimension can be reduced by coordinate transformation and the equivalent nonsingular system is got. After we have nonsingular system, the solution for the optimal control problem can be got by Riccati equation.

  • PDF

Reduced Order Luenberger State Observer Design for the Jackknifing Phenomenon Prevention of Articulated Vehicles using GPS (위성항법시스템을 이용한 연결식 차량의 잭나이핑 현상 예방을 위한 축소차수 상태관측기 설계)

  • Lee, Byung-Seok;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.688-698
    • /
    • 2012
  • This paper deals with ROLSO (Reduced Order Luenberger State Observer) design to prevent jackknifing phenomenon of articulated vehicles consisting of the tractor and semi-trailer by using GPS. In addition, by applying the regulator system using ROLSO feedback system, simulation's result presents that articulated vehicle's states are stabilized than the human's PR time (Preception Response time) rapidly. This simulation verifies that the automatic control of articulated vehicle's can be applied for the accident prevention for the time that the driver is unable to manage with the sudden accident. For this simulation, by using the equation of planar motion, the modeling of the articulated vehicle was performed. This modeling was expressed in the state space model. And FOLSO (Full Order Luenberger State Observer), ROLSO were designed by using the state space model of an articulated vehicle's dynamics.

Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors (자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계)

  • Seong, Sang-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.47-52
    • /
    • 2006
  • Using the equivalent ARMA model representation of the mixed random errors, we propose Klaman filter design methods for aided INS(Inertial Navigation System) which contains the gyroscope mixed random errors. At first step, considering the characteristic of indirect feedback Kalman filter used in the aided INS, we perform the time difference of equivalent ARMA model. Next, according to the order of the time differenced ARMA model, we achieve the state space conversion of that by two methods. If the order of AR part is greater than MA part, we use controllable or observable canonical form. Otherwise, we establish the state apace equation via the method that several step ahead predicts are included in the state variable, where we can derive high and low order models depending on the variable which is compensated from gyroscope output. At final step, we include the state space equation of gyroscope mixed random errors into aided INS Kalman filter model. Through the simulation, we show that both the high and low order filter models proposed give less navigation errors compared to the conventional filter which assume the mixed random errors as white noise.

State Equation Modeling and the Optimum Control of a Variable-Speed Refrigeration System (가변속 냉동시스템의 상태방정식 모델링과 최적제어)

  • Lee, Dan-Bi;Jeong, Seok-Kwon;Jung, Young-Mi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.579-587
    • /
    • 2014
  • This paper deals with precise analytical state equation modeling of a variable speed refrigeration system (VSRS) for optimum control in state space. The VSRS is described as multi-input and multi-output (MIMO) system, which has two controlled variables and two control inputs. First, the Navier-Stokes equation and mass flow rate were applied to each component of the basic refrigeration cycle to build a dynamic model. The dynamic model, represented by a differential equation, was transformed into the state equation formula. Next, a full-order state observer was built to estimate all of the state variables to compose an optimum control system. Then, an optimum controller was designed to minimize an evaluation function that has input energy and control error. Finally, simulations and experiments were conducted to verify the validity of the proposed modeling and designed optimum controller to regulate target temperature and superheat in a 1RT oil cooler system. The results show that the proposed method, state equation modeling and optimum control, is efficient to ensure optimal control performance of the VSRS.

An Accurate Model of Multi-Type Overcurrent Protective Devices Using Eigensystem Realization Algorithm and Practice Applications

  • Cheng, Chao-Yuan;Wu, Feng-Jih
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • Accurate models of the characteristics of typical inverse-time overcurrent (OC) protective devices play an important role in the protective coordination schemes. This paper presents a novel approach to determine the OC protective device parameters. The approach is based on the Eigensystem Realization Algorithm which generates a state space model to fit the characteristics of OC protective devices. Instead of the conventional characteristic curves, the dynamic state space model gives a more exact fit of the OC protective device characteristics. This paper demonstrates the feasibility of decomposing the characteristic curve into smooth components and oscillation components. 19 characteristic curves from 13 typical and 6 non-typical OC protective devices are chosen for curve-fitting. The numbers of fitting components required are determined by the maximum absolute values of errors for the fitted equation. All fitted equations are replaced by a versatile equation for the characteristics of OC protective devices which represents the characteristic model of a novel flexible OC relay, which in turn may be applied to improve the OC coordination problems in the sub-transmission and distribution systems.

Modeling and Simulation Technique of Two Quadrant Chopper and PWM Inverter-Fed IPMSM Drive System and Its Application to Hybrid Vehicles

  • Murata, Toshiaki;Kawatsu, Utaro;Tamura, Junji;Tsuchiya, Takeshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2012
  • This paper presents a state space model of a two quadrant chopper and PWM inverter-fed Interior Permanent Magnet Synchronous Motor (IPMSM) drive system and its application to hybrid vehicles. The drive system has two different state equations for motoring and regenerating action. This paper presents a common state equation by using State Space Averaging method. Using this model of the IPMSM drive system, detailed simulation and controller design of the drive system, including PWM inverter switching, are given. The validity of this model and usefulness, according to a comparison among Maximum Torque/Ampere control, Maximum Torque/Flux control, and Maximum Efficiency optimization, are confirmed from simulation results.

Modeling and State Observer Design for Roll Slip in Cold Cluster Mills (냉간압연 다단 압연기의 롤 슬립 모델링 및 상태 관측기 설계)

  • Kang, Hyun Seok;Hong, Wan Kee;Hwang, I Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1543-1549
    • /
    • 2012
  • This study focuses on the state space model and the design of a state observer for the slip dynamics between rolls in STS cold cluster mills. First, a mathematical model of the roll slip is given as a nonlinear differential equation. Then, by using a Taylor series expansion, it is linearized as a state space model. Next, by using Gopinath's algorithm, a minimal-order state observer based on the state space model is designed to estimate the angular speed of all idle rolls except for an actuated roll that is measureable. Finally, a computer simulation is used to validate that the proposed state space model very well describes slip dynamics between, and moreover, the state observer very well estimates the angular speed of the idle roll.

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

The Research on the Modeling and Parameter Optimization of the EV Battery (전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

A Fast Time Domain Digital Simulation for the Series Resonant Converter (직렬 공진형 변환기에 관한 시간 영역 디지틀 시뮬레이션)

  • Kim, Marn-Go;Han, Jae-Won;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.534-538
    • /
    • 1987
  • State-space techniques are employed to derive an equivalent nonlinear recurrent time-domain model that describes the series resonant converter behavior exactly. This model is employed effectively to analyze large signal behavior by propagating the recurrent equation and matching boundary conditions through digital computation. The model is verified with a laboratory converter for a steady-state operation.

  • PDF