• Title/Summary/Keyword: State Feedback Controller

Search Result 676, Processing Time 0.03 seconds

State Feedback $H^{\infty}$ Controller Design for Linear Systems with Time-delays (시간지연을 가지는 선형 시스템에 대한 상태궤환 $H^{\infty}$제어기 설계)

  • Jeong, Eun-Tae;Lee, Gap-Rae;Lee, Jae-Myeong;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 1996
  • This paper presents a state feedback $H^{\infty}$ controller design method for linear systems with delayed states and inputs. We derive a sufficient condition that the closed-loop system is asymptotically stable for all time-delays and that the $H^{\infty}$-norm of the closed-loop transfer function is less than or equal to some prescribed level $\gamma$. And we propose a sufficient condition for the existence of a state feedback $H^{\infty}$ controller using a form of linear matrix inequality(LMI). Furthermore, we show that the state feedback $H^{\infty}$ controllers can be obtained from solutions satisfying LMI.

  • PDF

A Study on Way-Point Tracking of AUV using State Feedback (상태 궤환을 사용한 AUV의 경우점 추적 연구)

  • Kwon, Soon-Tae;Baek, Woon-Kyung;Kang, In-Pil;Choi, Hyeung-Sik;Joo, Moon-G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1266-1272
    • /
    • 2011
  • For way-point tracking of an autonomous underwater vehicle, a state feedback controller was designed by using pole placement scheme in discrete time domain. In the controller, 4 state variables were used for regulating the depth of the vehicle in z direction, and 3 state variables, for steering the vehicle in xy plane. Assuming constant speed of AUV, we simplified the design of the way-point tracking system. The proposed controller was simulated by MATLAB/Simulink using 6 degree-of-freedom nonlinear model and its performance of way point tracking was shown to be fulfilled within 1 m, nevertheless the proposed controller is quite simple and easy to implement compared to sliding mode controller.

Guaranteed Cost Control of Parameter Uncertain Systems with Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • In this paper, we deal with the problem of designing guaranteed cost state feedback controller for the generalized time-varying delay systems with delayed state and control input. The generalized time delay system problems solved on the basis of LMI(linear matrix inequality) technique considering time-varying delays. The sufficient condition for the existence of controller and guaranteed cost state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed controller design method can be extended into the problem of robust guaranteed cost controller design method for parameter uncertain systems with time-varying delays easily.

  • PDF

Autopilot for Safe Landing in the Microburst (마이크로버스트를 통과하는 비행기의 안전착륙을 위한 자동조종장치)

  • 박기홍
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.605-612
    • /
    • 1997
  • A state feedback controller and an observer have been developed and analyzed for an aircraft's safe landing in the windshear called microburst. The observer estimates the ambient wind field as well as the full-order longitudinal state vector. The controller uses the wind and state estimates for guiding the control inputs for safe landing. For the observer and controller gains, the design methodologies of linear quadratic estimation and linear quadratic regulation have been exploited. Analysis shows that some of the microburst-induced aircraft accidents in the past might have been avoided with the designed autopilot.

  • PDF

Novel Position Controller for PMSM Based on State Feedback and Load Torque Feed-Forward

  • Zheng, Zedong;Li, Yongdong;Fadel, Maurice
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • In this paper, a novel position controller based on state feedback and feed-forward is proposed. Traditional position and speed controllers are replaced by a single controller with the position and speed as state feedbacks, and the position command and load torque as feed-forwards. The feedback and feed-forward gains are obtained by analytic modeling and design. The load torque, rotor speed and position are estimated by an observer based on a Kalman filter (KF) with a low resolution mechanical position sensor. Feed-forward compensation by an estimated load torque is used to improve the dynamic performance during load torque changes.

$H_{\infty}$ CONTROLLER DESIGN VIA LQ GAME PROBLEM FOR DISRETE TIME SYSTEM

  • Kwon, Wook-Hyun;Lee, Joon-Hwa;Kim, Won-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.864-867
    • /
    • 1990
  • In this paper, a state space solution to the discete time H$_{\infty}$ control problem is presented. It is shown that there exist LQ game problem corresponding to H$_{\infty}$ control problems and the H$_{\infty}$ controller can be obtained by solving the LQ game problem. Explicit state space formulae are given for the state feedback H$_{\infty}$ controller and output feedback H$_{\infty}$ controllers.lers. state feedback $H_{\infty}$ controller and output feedback $H_{\infty}$ controllers.

  • PDF

Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.462-467
    • /
    • 2007
  • The design and synthesis of a state feedback controller assumes the feedback of all state variables of the system. However, some state variables are not physical quantifies so that sensors may not be available, or may be too expensive to measure. Hence, a state observer can be an alternative to estimate unmeasurable state variables. This paper therefore presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are tuned by real-coded genetic algorithms(RCGAs) such that the given performance indices are minimized. The proposed method is demonstrated through simulations.

State Feedback-Based Position Controller of VCM(Voice Coil Motor) for Precise Automated Manufacturing Process (조립구동용 VCM 정밀구동을 위한 상태궤환 방식의 위치제어기)

  • Kim, Sung-Kuk;Rajendra, Shrestha;Seok, Jul-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.129-135
    • /
    • 2010
  • The state feedback-based position controller for the voice coil motor(VCM) used in precise automated manufacturing processes is proposed and analyzed in this paper. The proposed controller has advantage over the conventional cascade-type P-PI controller in terms of the gain selection and the controller interference. The feasibility of the presented idea is verified by experimental results on a designed VCM.

Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors (전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계)

  • Oh, Tae-Seok;Shin, Yun-Su;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

Web Tension Control Using Output Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.213-218
    • /
    • 2007
  • We consider a web transport system. The objective of this paper is to design the output feedback controller such that the controller can track a desired tension and processing speed on web transport system. We propose the new design method using observer and feedback linearization technique. The proposed method use a nonlinear feedback to transform to linear system and high gain observer to estimate the state value. We show that the proposed controller can achieve the control object using only output. We show a performance of controller via the simulation.

  • PDF