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ABSTRACT

In this paper, a state space solution to the discrete time Heo
control problem is presented. It is shown that there exist LQ game
problems corresponding to Hoe control problems and the Heo con-
troller can be obtained by solving the LQ game problem. Explicit
state space formulae are given for the state feedback Ho, controllers
and output feedback Ho, controllers.

I. INTRODUCTION

The H,, theory has been developed in both the input-output
operator and the state space frame work(1,4]. Furthermore, a num-
ber of recent papers has shown that certain He, control problems
for continuous time systems can be simply solved by using Ric~
cati equation based approaches(2,3,5,6,7|. However, discrete time
H, optimal control has not been studies extensively. Furuta and
Phoojaruenchanachai propose a discrete time H, controller using
Bounded Real Lemma {8]. Bilinear transformation is used to get
the discrete time H, controllers by Gu et al.[9].

In this paper, we propose a state space method for the discrete
time H, control problem. This method is motivated from the rela-
tions between the Hy, control problem and the LQ game problem.
This relations are reported in several papers|6,7,10] for continuous
time systems. And using this relation, Hy controller for gen-
eral time varying continuous system is obtained [10]. To author’s
knowledge, for the discrete time systems there exists no paper deal-
ing with the connection between the H,, control problem and the
LQ game problem. We generalize these relations to the discrete
time linear systems and get an H, controller from the LQ game
problem. The solution of the LQ game problem is obtained by
using a modified Riccati equation.

In Section II, some definitions and facts are presented. In Section
11, we generalize the relations between the H,, control problem
and the LQ game problem to the discrete time linear systems. In
Section IV, we will give the explicit state feedback solutions to
the discrete time Ho, control problems. In Section V, an output
feedback solution is given.

1.

For the discrete time linear system G
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z(1 + 1) = Az(¢) + Buw(i)
2(i) = Cz(1)
(2.1)
over the time interval 0 << < N.
Each norm of signals is defined by
N
ol = 3 w7 (ol
;0
123 = 2 =7 @)=).
(2.2)
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Let g() be the impulse response of the system (2.1). Define two
norm and infinite norms of the system as

N
G113 := Trace {_Z gT(i)g(i)} (23)
where
z(0) =0, w()=0 for 0<i<N
and
e max {2l
16l = mas {1212} (24)

where z{0) = 0.
The system used in this paper is described by

z(t + 1) = Az(i) + Biw(z) + Bau(i)
z(1) = Cy1z(1) + Dauf)
y(i} = Caz(z) + Dyw(s).
(25)

The signal w contains ail external inputs, including disturbances,
sensor noise, and commands; the output z is an error signal; y is
the measured variables; and u is the control input. The resulting
closed-loop transfer function from w to z is denoted by T,,,.

111. THE RELATIONS BETWEEN THE LQ GAME PROBLEM
AND THE OPTIMAL H,, PROBLEM

The H,, problem(3.1) and the LQ game problem with parameter
v (3.2) are defined as

o { e f=

minmax{|z|3 ~ +?lwl) = al7) O<7

(3.1)

(3.2)

where v > 0.

In this section, it is shown that the solution of LQ game problem
is equivalent to an H, sub-optimal controller which stabilizes the
closed loop system and reduces the [[Thy [l to -

THEOREM 1. If the LQ game problem with parameter v has a
solution then v* <.

Proof: Let @ and % be the solution of the LQ game problem.
Denote # = z(, ).
Consider the case that w = 0 then clearly

minmax{lz]3 - w3} = al) 20 (33)
By Equation (3.3) for all w
=8, w))3 — v*llwl < 1213 - +*HE03 > . (34)
Hence, from Equation (3.3)for all w # 0
z(%, w)|)2
LR < fp e )



And
sup =@, w)lf _
weo w3

ll=liz

llwlla=p ||wif?

a(v)

ST+ 5a

(3.6)

where M >0 and u= &

Equation (3.6) must be satisfied for all M > 0. Let M~ > oo,

and we obtain

TR
lwli3

Equation (3.7) means that v* < . R

(3.1
w0

THEOREM 2. If4* < ~ then the LQ game problem with param-
eter v has a solution.

Proof: Before proving this theorem we prove two lemmas.

LEMMA 1. If there exist a solution of LQ game problem then

8%J,

) (u,w) 20 (3.8)
2 fuw) <0 (5.9

where
Iy o= |2llf = Pl (3.10)

3
Proof: Since J, is a quadratic functional of u and w ,s0 45 (u, w)

and %3"7",1(11, w) are constant for all u and w. Especially at the so-
Iution of the LQ game problem, the above values satisfies

2

aauJ; (u,w} >0 (3.11)
2

é)au{; (u,w) <O. (3.12)

LEMMA 2. If LQ game problem with parameter with 1 is solved
and 71 < 42 then LQ game problem with parameter 72 can be
solved.

Proof: Since J,2 is more negative than Jy;, LQ game problem
with parameter ¥2 can be solved. B

Proof of theorem 2: Let (u*, w*) be the solution of the Ho, prob-
lem. We will show that (u*, w”) is one solution of LQ game prob-
lem with parameter v*. And then from the Lemma 2, LQ game
problem with parameter 42 has a solution.

Denote J; := ||z|| and Jz := ||w]|. Since {u*,w") is a solution of

H., problem
5 (iﬁ) (u*,w*) = 0. (3.13)
Jz
Namely
8JiJz = 8J3d1
7 =0 (3.14)
and
s - (D) sn=0 3.15
i\, ) 8ha=0 (3.15)
Since
J L] L] -
(J—‘) {(u w') = (v")? (3.18)
2
we obtain
8J1 — (7°)28Ja(u*, w*) = 0. (3.17)

Hence (u*,w") may be a solution of the LQ game problem with
sarameter ¥*. We must show that the followings.

8%Jz
(4, %) 20

—a‘uT'( 2 (3.18)

865

{3.19)

Equation (3.18) is always satisfied. When u = u* and for all w
Equation(3.19) is satisfied.

et )l

2
g =) (5:20)
And for all w
llz(u™, w)lif - (v*)lwli} <. (3.21)
Hence we get
Jye(ut, w) € Jye(u*, 0*)  for all w. (3.22)

Equation (3.22) means (3.19). From this result and Lemma 1, the
theorem is proven. I

COROLLARY 1. Let @ be the solution of LQGP(y). With the
control @i the closed loop system satisfies
2ll7 < a(7).
Corollary 1 states the guaranteed H; performance bound of the
sub-optimal H, controller.
IV. STATE FEEDBACK CONTROL

In this section the explicit solution of state feedback controller
is proposed. The solution is obtained by solving the LQ game
problem. We will solve the LQ game problem by the dynamic
programming.

Let C. = C,D; = D,C, =1,Dy =0.
Assume that CTD =0 ,R := DTD > 0, Q :=
Define the performance J(v} as follows.
1 »
() = 5Hllalz — 2 *{wliz)

= 2 (T (N)Qa(N) + uT (N)Ru(N) — v (W)w(¥))

cTe > o.

N-1 N-1 :
+3 > A" 6)Qeli) + o () Rulh) - 92 3 W (i)uli)

=0

(4.1)

Then LQ game problem with parameter 7 is equivalent to

minmaxJ (7). (42)

uli) wli)
We begin by defining
Inn(z(N) = %zT(N)P(N)z(N), P(N) =@, u(N):=0,
w(N)=0

The cost over the final interval is given by
Jy-r (2N = 1), u(N — 1), w(V - 1)) = 227 (¥ = )Qa{N - 1)
+ %J(N — 1) Bu(N ~1) - %’12wT(N ~ (N —1)
+ 3 [A=(N = 1) + Byu(N — 1) + Bau(N = )"
x P(N)[Az(N - 1) + Byw(N — 1) + Bu(N — 1)].
(4.3)

To minimize Jy 1, v with respect to u{N—1) and maximize Jy—1,§
with respect to w(/N — 1) we need to evaluate the indicated partial
derivatives.
Iu-LN _ py(N - 1)+ BT P(N)

u
x [Az(N — 1) + Byw(N — 1) + Bu(N —1)] =0

(4-4)



3IN_LN _ _2(N — 1)+ BT P(N)

dw
x [Az(N — 1) + Byw(N ~ 1)+ Byu(N -1)] =0
(4.5)
3JIN_1N
9IN-1N _ 214 BTP(N)B, <0 4.7
Juw? ! ! :

Equation (4.6) is always satisfied and Equation (4.7) is satisfied
by suitable chosen 7. From Equation (4.4) and (4.5) we get a
Equation (4.8)
R + BT P(N)B,
Bf P(N)B,

A E

[:gﬂ P(N)Az(N -1)

(4.8)

Solving (4.5) then we get the optimal control u*(N — 1) and the
worst case disturbance w* (N — 1)

[V - 1)] _ {R#—B‘{P(N)BZ BT P(N)B, ]_,

lw(N-1)] | BTP(N)B, —2*I+BTP(N)B;
x [:gﬂ P(N)Az(N —1) = [(F;((x: 3] (N - 1).

(4.9)

We must choose - in order that the inverse in Equation (4.9) ex-
ists. Substituting the expression for u*(N — 1), w"(N — 1) into the
Equation (4.3) for Jy_1n gives Jy_y n-

Th-1n(z(N = 1),u" (N - 1), w"(N - 1))
- %IT(N ~1){|A + BoF(N — 1) + BiG(N — 1)|" P(N)

x [A+ ByF(N —1) + BiG(N - 1) + FT(N - 1)RF(N - 1)
—2GT(N - 1)G(N ~ 1) + Q}z(N - 1)

= 22T (N = )P(N = 1a(N —1).

(4.10)
In general, the same derivation gives optimal solution
u (N — k), w* (N — k)
uw{N — k) = F(N ~ k)z(N - k)
w*(N - k) =G(N-k)z(N—k) 1<k<N
(4.11)
where F and G are obtained by
FN-K] _
G(N-kK)|

BIP(N — k+1)B,

_[R+BIP(N-k+1)B; !
—42I+ BTP(N - k+1)B,

BTP(N —k+1)B;

x [gﬂ P(N ~ k+ 1) Az(N — k)
(4.12)
and
P(N—k)=[A+ ByF(N — k) + ByG(N — KITP(N —k+1)
x |A+ BF(N — k) + BiG(N — k)| + FT(N —~ k)RF(N — k)
—4?GT(N - k)G(N - k) + Q.
{4.13)
And the optimal value is given by

53 0(2(0), w*(0), 0" (0)) = 527 (O)P()=(0)

For infinite time controller the following Riccati equation must be
solved.
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BT P..B,

{Fm _ _[R+BIP.B; 1 BT PeA
—421 + BT Po B, BT P A

Goo BTP,.B,
(4.15)
Poo = [A+ ByFo + B1Goo|T Poo|A+ BaFoo + B1Goo|
+ FTRF, — 1*GT,Go + Q
(4.16)

The parameter 4y must be chosen in order that the inverse in Equa-
tion (4.15) exists and the parameter ysatisfies

~*I+ BT P B, <0. (4.17)
Then the optimal solutions are
u* (i) = Foo (1)
Whorst{i) = Gooz(i)-
(4.18)

Using the result in this section, we can obtain the output feedback
form of Heo controler as in section V.

V. OuTPUT FEEDBACK CONTROL

To get the output feedback form of Hoo controller, we following
Jhe Doyle’s approach {7]. The infinite time system (2.3) has the
realization of the transfer matrix taken to be of the form

A B, B;
G=|C; 0 Di}.
C;, Dy O
The following assumptions are made
(i) (A, By) is stabilizable, (C, A) is dectectable.

(ii) (A, Ba) is stabilizable, (Cz, A) is detectable.
(1i1) DT{C\Dy] = {0Ry,Ry >0

[5:]72 - [

Then the H, controller is given by the following steps. Define a
matrix

) ] ,R2>0

Atmp = A+ B1Gos (5.1)
Aimp B B

Gimp'=|—Feu 0 [I|. (5-2)
Cc; D; 0

Where G, is defined in Equation (4.15). Then a sub-optimal
controller is

(5.3)

Atmp - LtmpCZ + BZFoo ‘Ltmp
Foo 0

where L¢mp is output estimation solution of Gymp, Which is de-
fined in the followings. These problems are defined as in [6}. The
problems are labeled as follows.

FI: Full information problem

FC: Full control problem

DF: Disturbance feedforward control problem

OE: Output estimation problem

A. Full Information Problem: In this problem, the transfer matrix
G is taken to be of the form

A B, B
C, 0 Dy

LR BB



The following assumptions are made.
(1) (A, By) is stabilizable, (Cy, A) is dectectable.
(ii) (A, By) is stabilizable.

(iii) DT[C1D1] = [ORy), B > 0
The H,, controller is given by

K=F,.

B. Full Control Problem: In this problem, the transfer matrix G
is taken to be of the form

A B, [I0]
¢:={c, o oI
c, D, [oo]

The following assumptions are made.
(1) (A, B,) is stabilizable, (Cy, A) is dectectable.
(ii) (C2, A) is detectable.

v
Byl r_| 0
[DZ]D —[Rz] ,Ry >0

The Ho, controller is given by
K = L.

Where

[Lm ] _ _[Rg +C2850C  C35CT |7 [CaSwAT
M, C18.,CT I+ stfo C18, AT

(5.4)
and

Soo = [AT + CF Loo + CF Meoo|" Seo | AT + CF Loo + CT Mo |+
LT RoLos — " MI M, + By BT

(5.5)

The parameter -y must satisfy the following equation.

I+ C18.CT <0

(5.6)

C. Disturbance Feedforward Control Problem: In this problem, the
transfer matrix G is taken to be of the form

A B, B;
G=|C: 0 D
C, I 0

Assume that A ~ B, Cj is stable then a H solution is given by

K= [A+B,Fo,, -BiC; %}

Fo

D. Output Estimation Problem: In this problem, the transfer ma-
trix G is taken to be of the form

A B B
G=1|C O I
C; D, ©
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’I:he following assumptions are mace.
(l) (A, By) is stabilizable, A — B,C] is stable.
(ii) (A, By) is stabilizable, (C;, A) is detectable.

(iv} [g;]l,;=[}g2] o

Then the He, solution is given by

K= [A+L°°Cg Lw]
Cy 0
V1. CONCLUSION
In this paper, a Hoo controller design method for the discrete
time lirear system is presented. It is shown that the solution of
the LQ game problem is a Hoo controller. From this fact, we can
obtain the discrete time Ho, controller in state space by solving
he modified Riccati equations. Adjusting the parameter of the
LQ game problem, we can get a controller which has the desired
Hy performance and H3 performance. And in order to otain the
optimal H,, controller an iterative computation is needed. The
results can be applied to the robust stabilization of linear discrete
time systems including uncertain parameters.
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