• Title/Summary/Keyword: State Equation

Search Result 2,235, Processing Time 0.025 seconds

EIGENVALUE COMPARISON FOR THE DISCRETE (3, 3) CONJUGATE BOUNDARY VALUE PROBLEM

  • Jun Ji;Bo Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.925-935
    • /
    • 2023
  • In this paper, we consider a boundary value problem for a sixth order difference equation. We prove the monotone behavior of the eigenvalue of the problem as the coefficients in the difference equation change values and the existence of a positive solution for a class of problems.

BIFURCATIONS IN A DISCRETE NONLINEAR DIFFUSION EQUATION

  • Kim, Yong-In
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.689-700
    • /
    • 1998
  • We consider an infinite dimensional dynamical system what is called Lattice Dynamical System given by a discrete nonlinear diffusion equation. By assuming the nonlinearity to be a general nonlinear function with mild restrictions, we show that as the diffusion parameter changes the stationery state of the given system undergoes bifurcations from the zero state to a bounded invariant set or a 3- or 4-periodic state in the global phase space of the given system according to the values of the coefficients of the linear part of the given nonlinearity.

  • PDF

Molecular Spinless Energies of the Morse Potential Energy Model

  • Jia, Chun-Sheng;Cao, Si-Yi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3425-3428
    • /
    • 2013
  • We solve the Klein-Gordon equation with the Morse empirical potential energy model. The bound state energy equation has been obtained in terms of the supersymmetric shape invariance approach. The relativistic vibrational transition frequencies for the $X^1{\sum}^+$ state of ScI molecule have been computed by using the Morse potential model. The calculated relativistic vibrational transition frequencies are in good agreement with the experimental RKR values.

POSITIVE SOLUTION AND GROUND STATE SOLUTION FOR A KIRCHHOFF TYPE EQUATION WITH CRITICAL GROWTH

  • Chen, Caixia;Qian, Aixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.961-977
    • /
    • 2022
  • In this paper, we consider the following Kirchhoff type equation on the whole space $$\{-(a+b{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}\;{\mid}{\nabla}u{\mid}^2dx){\Delta}u=u^5+{\lambda}k(x)g(u),\;x{\in}{\mathbb{R}}^3,\\u{\in}{\mathcal{D}}^{1,2}({\mathbb{R}}^3),$$ where λ > 0 is a real number and k, g satisfy some conditions. We mainly investigate the existence of ground state solution via variational method and concentration-compactness principle.

Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery (리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구)

  • Han, Seungyun;Park, Jinhyeong;Park, Seongyun;Kim, Seungwoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

Instantaneous Deflection calculation Incorporated with Internal Force State Factor In RC short beams(a/d<2.5) (RC 짧은보(a/d<2.5)의 순간처짐 산정에 대한 연구)

  • Oh, Hyun-Chul;Jeong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.713-718
    • /
    • 2001
  • This paper describes an attempt to develop a new equation to calculate deflection for reinforced concrete deep beams(a/d<2.5). The main idea incorporated with this equation is the internal force state factor($\alpha$)which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new equation for deflection calculation using internal force state factor($\alpha$)provides more exact result of deflection in reinforced concrete deep beams than the equation predicted by the current code provisions.

  • PDF

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Stability of discrete state delay systems

  • Suh, Young-Soo;Lee, Won-Gu;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.112-115
    • /
    • 1999
  • A new method to solve a Lyapunov equation for a discrete delay system is proposed. Using this method, a Lyapunov equation can be solved from a simple linear equation and N-th power of a constant matrix, where N is the state delay. Combining a Lyapunov equation and frequency domain stability, a new stability condition is proposed. The proposed stability condition ensures stability of a discrete state delay system whose state delay is not exactly known but only known to lie in a certain interval.

  • PDF

Sensorless Velocity Estimation using the Reduced-order State Equation of Induction Motor based on Kalman Filter (유도전동기 축소모델을 이용한 센서리스 칼만 필터 속도 추정기)

  • 이승현;정교범
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.245-248
    • /
    • 1998
  • This paper proposes a sensorless velocity estimator using the reduced-order state equation of induction motor based on Kalman Filter. The electrical transients in the stator voltage equations of induction motor are neglected in the reduced-order model. The advantage of using the reduced-order model is to reduce the required number of numerical integrations for filtering the rotor speed. As changing the operating points and the parameters of the induction motor in simulation studies, the behavior of the sensorless velocity estimator as predicted by the reduced-order state equation of induction machine is compared with the behavior predicted by the complete state equation of induction machine.

  • PDF

Necessary and Sufficient Stability Condition of Discrete State Delay Systems

  • Suh, Young-Soo;Ro, Young-Shick;Kang, Hee-Jun;Lee, Hong-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.501-508
    • /
    • 2004
  • A new method to solve a Lyapunov equation for a discrete delay system is proposed. Using this method, a Lyapunov equation can be solved from a simple linear equation and N-th power of a constant matrix, where N is the state delay. Combining a Lyapunov equation and frequency domain stability, a new stability condition is proposed for a discrete state delay system whose state delay is not exactly known but only known to lie in a certain interval.