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EIGENVALUE COMPARISON FOR THE DISCRETE

(3, 3) CONJUGATE BOUNDARY VALUE PROBLEM

Jun Ji and Bo Yang

Abstract. In this paper, we consider a boundary value problem for a

sixth order difference equation. We prove the monotone behavior of the
eigenvalue of the problem as the coefficients in the difference equation

change values and the existence of a positive solution for a class of prob-
lems.

1. Introduction

Sixth order boundary value problems arise from physical sciences includ-
ing the study of elasticity. For example, according to Agarwal, Kovacs, and
O’Regan [1], the deformation of the equilibrium state of an elastic circular ring
segment with its two ends simply supported can be described by the sixth-order
boundary value problem

u(6) + 2u(4) + u′′ = f(t, u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0.

Sixth order boundary value problems have attracted some attention recently.
For some other results on sixth order boundary value problems, we refer the
readers to [3, 6–8, 18]. The reader is referred to [16] for more applications
of sixth order boundary value problems in physical sciences and engineering.
Motivated by these works, in this paper, we consider a boundary value problem
for a discrete sixth order difference equation, which is associated with the (3,3)
conjugate boundary value problem that consists of the differential equation

(1) y(6)(t) + f(t, y(t)) = 0, 0 < t < 1,

and the boundary conditions

(2) y(0) = y′(0) = y′′(0) = y′′(1) = y′(1) = y(1) = 0.
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The linear form of the discrete analog of the problem (1)-(2) is

(3) ∆6uk−3 + λakuk = 0, k = 1, 2, . . . , n;

(4) u−2 = ∆u−2 = ∆2u−2 = ∆2un+1 = ∆un+2 = un+3 = 0.

Here, λ is a parameter, the coefficients a1, a2, . . . , an are real numbers, and ∆
is the forward difference operator, that is, ∆uk = uk+1 − uk. Thus, we have

∆2uk = ∆uk+1 −∆uk = uk+2 − 2uk+1 + uk

and

∆6uk = uk+6 − 6uk+5 + 15uk+4 − 20uk+3 + 15uk+2 − 6uk+1 + uk.

It is easily seen that the boundary conditions (4) are equivalent to

(5) u−2 = u−1 = u0 = un+1 = un+2 = un+3 = 0.

Denote the following n× n matrix

(6)



20 −15 6 −1 0 · · · 0 0 0 0 0
−15 20 −15 6 −1 · · · 0 0 0 0 0
6 −15 20 −15 6 · · · 0 0 0 0 0
−1 6 −15 20 −15 · · · 0 0 0 0 0
0 −1 6 −15 20 · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · 20 −15 6 −1 0
0 0 0 0 0 · · · −15 20 −15 6 −1
0 0 0 0 0 · · · 6 −15 20 −15 6
0 0 0 0 0 · · · −1 6 −15 20 −15
0 0 0 0 0 · · · 0 −1 6 −15 20


by D and then, we can put the problem (3)-(4) in the matrix form

(7) Du− λAu = 0,

where A = diag(a1, a2, . . . , an) is a diagonal matrix of order n and u = (u1, u2,
. . . , un)

T is a vector of order n.
In this paper we will establish the existence of a positive solution u to the

system (7) for any nonzero nonnegative sequences {ai} and the monotone be-
havior of the eigenvalue λ of the system as the real sequence {ai} changes. Our
approach directly follows the strategies employed in [9–13] for various other
problems, relying on the properties of D and its inverse. Since D is a hepta-
diagonal symmetric Toeplitz matrix, two explicit formulas proposed in [14,15]
for the inverse of general Toeplitz matrices could be directly applied to express-
ing the inverse of D either as a sum of products of low and upper triangular
Toeplitz matrices or as a sum of products of circular matrices and upper trian-
gular Toeplitz matrices. However, the positiveness of entries of the inverse of D
seems not to be obtained easily from these formulas from [14,15]. For this rea-
son, we take a different approach in this paper. By making a full use of special
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structure of D, we express the inverse D−1 of D as a sum of a componentwise
positive rank-one matrix and several componentwise nonnegative matrices in
Section 2. Finally, Section 3 will be devoted to the eigenvalue comparison and
the existence of a positive solution of the system (7).

2. Preliminary results

In this section, we collect a few technical results on D which are needed in
the analysis of the major results of the paper.

Theorem 2.1. Let n ≥ 3 and D be the matrix defined as in (6) and b =
(−15, 6,−1, 0)T , where 0 is the zero matrix in R1×(n−3). Then, the matrix D
is nonsingular and the i-th element of x = D−1b is given by

(8) xi = − (i+ 1)(i+ 2)(n+ 1− i)(n+ 2− i)(n+ 3− i)

2(n+ 1)(n+ 2)(n+ 3)
, i = 1, 2, . . . , n.

Proof. Obviously, the system of linear equations Dx = 0 can be regarded as a
difference equation

(9) −xk−3+6xk−2−15xk−1+20xk−15xk+1+6xk+2−xk+3 = 0, k = 1, 2, . . . , n

with boundary value conditions

(10) x−2 = x−1 = x0 = xn+1 = xn+2 = xn+3 = 0.

The characteristic polynomial of the difference equation (9) can be written
as

(11) p(z) = −1 + 6z − 15z2 + 20z3 − 15z4 + 6z5 − z6 = −(z − 1)6

which has a zero z = 1 of multiplicity 6. Thus, the solution to (9)-(10) is in
the form of

(12) xi = α0 + α1i+ α2i
2 + α3i

3 + α4i
4 + α5i

5

for i = −2,−1, 0, 1, . . . , n + 3, where the coefficients {αi : i = 0, 1, . . . , 5} are
determined through the boundary value conditions (10). These boundary value
conditions give rise to the following system of linear equations:

1 0 0 0 0 0
1 −2 (−2)2 (−2)3 (−2)4 (−2)5

1 −1 (−1)2 (−1)3 (−1)4 (−1)5

1 n+ 1 (n+ 1)2 (n+ 1)3 (n+ 1)4 (n+ 1)5

1 n+ 2 (n+ 2)2 (n+ 2)3 (n+ 2)4 (n+ 2)5

1 n+ 3 (n+ 3)2 (n+ 3)3 (n+ 3)4 (n+ 3)5




α0

α1

α2

α3

α4

α5

 =


0
0
0
0
0
0


which only has a trivial solution, i.e., αi = 0 for i = 0, 1, . . . , 5 due to the fact
that its coefficient matrix is a Vandermonde matrix whose determinant is

4(n+ 1)(n+ 2)2(n+ 3)3(n+ 4)2(n+ 5) ̸= 0.

Thus, we have x = 0, i.e., D is nonsingular.
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Similarly, the system of linear equations Dx = b can be written as the
difference equation (9) with boundary value conditions

(13) x−2 = x−1 = 0, x0 = −1, xn+1 = xn+2 = xn+3 = 0.

Thus, the solution to Dx = b is also in the form of (12) but this time the
coefficients {αi : i = 0, 1, . . . , 5} are determined by the boundary value condi-
tions (13). Equivalently, xi is the polynomial of degree 5 through the following
six points in R2

(−2, 0), (−1, 0), (0,−1), (n+ 1, 0), (n+ 2, 0), and (n+ 3, 0).

The Lagrange’s interpolation formula gives

xi = (−1)
(i− (−2))(i− (−1))(i− (n+ 1))(i− (n+ 2))(i− (n+ 3))

(0− (−2))(0− (−1))(0− (n+ 1))(0− (n+ 2))(0− (n+ 3))

resulting in the expression of (8). □

In what follows, denote the submatrix consisting of the first k rows and k
columns of D by Dk. Obviously, Dk is the same kind of symmetric Toeplitz
matrix as D with different order and D = Dn.

For k ≥ 3, define

(14) βk = (−15, 6,−1, 0, . . . , 0)T ∈ Rk and γk = 20− βT
k D

−1
k βk.

By employing the explicit expression for D−1
k βk from Theorem 2.1, we have

γk = 20 + (−15)
6k(k + 1)(k + 2)

2(k + 1)(k + 2)(k + 3)
+ 6

12(k − 1)k(k + 1)

2(k + 1)(k + 2)(k + 3)

− 20(k − 2)(k − 1)k

2(k + 1)(k + 2)(k + 3)

=
(k + 4)(k + 5)(k + 6)

(k + 1)(k + 2)(k + 3)
.(15)

Theorem 2.2. Let D be the matrix defined as in (6) and Dk be the submatrix
of D consisting of its first k rows and k columns. Then, the determinant of Dk

is

(16) det (Dk) =
(k + 1)(k + 2)2(k + 3)3(k + 4)2(k + 5)

8640
for k ≥ 1. Moreover, D is positive definite.

Proof. A simple calculation gives

(17) det (D1) = 20, det (D2) = 175, and det (D3) = 980

indicating that the expression (16) holds for k = 1, 2, and 3.
For any i ≥ 3, Di is nonsingular in view of Theorem 2.1. With the help of

(14) we can write

Di+1 =

(
20 βT

i

βi Di

)
=

(
1 0
0 Di

)(
1 βT

i

0 I

)(
γi 0

D−1
i βi I

)
,
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leading to

(18) det (Di+1) = γi det (Di) for i ≥ 3.

For any k ≥ 4, repeatedly using (18) along with (15) and (17), we obtain

det (Dk) = det (D3) γ3γ4γ5 · · · γk−3γk−2γk−1

= 980
(7)(8)(9)

(4)(5)(6)

(8)(9)(10)

(5)(6)(7)

(9)(10)(11)

(6)(7)(8)
· · · (k + 3)(k + 4)(k + 5)

(k)(k + 1)(k + 2)

=
(k + 1)(k + 2)2(k + 3)3(k + 4)2(k + 5)

8640
,

where the last equality comes from the fact that the numerator of γi can be
canceled with the denominator of γi+3.

Since all the leading principal minors det (Dk) of D are positive in view of
(16), D is obviously positive definite. □

If only 4 decimal places are displayed, then we have

D−1
1 = (0.05), D−1

2 =

(
0.1143 0.0857
0.0857 0.1143

)
,

and

(19) D−1
3 =

 0.1786 0.2143 0.1071
0.2143 0.3714 0.2143
0.1071 0.2143 0.1786

 .

We observe that all entries of these matrices are positive. Next, we will show
that all the entries of D−1 are positive as well. To this end, we define

(20) pk+1 =
(
0, . . . , 0, 1,−βT

k D
−1
k

)T ∈ Rn for k ≥ 3.

It is seen from Theorem 2.1 that the last k+1 components of pk+1 are positive
and the other n− k − 1 elements are all zero. In particular,

pn =

(
1

−D−1
n−1βn−1

)
for n ≥ 4

whose components are all positive.

Theorem 2.3. Let D be the matrix defined as in (6). Then

D−1 =

(
0 0
0 D−1

3

)
+

p4p
T
4

γ3
+ · · ·+

pn−1p
T
n−1

γn−2
+

pnp
T
n

γn−1
for n ≥ 4,

where pi is defined as in (20) for i = 4, 5, . . . , n and γk is given in (15) for
each k. Moreover, all entries of D−1 are positive.

Proof. In view of Theorem 2.1 and (15), both Dk and Dk+1 are nonsingular
and γk > 0 for k ≥ 3. It is seen from

Dk+1 =

(
20 βT

k

βk Dk

)
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that the inverse of Dk+1 can be expressed involving D−1
k and the inverse of

Schur’s complement as

D−1
k+1 =

1

γk

(
1 −βT

k D
−1
k

−D−1
k βk γkD

−1
k +D−1

k βkβ
T
k D

−1
k

)
=

(
0 0
0 D−1

k

)
+

1

γk

(
1

−D−1
k βk

)(
1

−D−1
k βk

)T

.(21)

For k = n− 1,

(22) D−1 = D−1
n =

(
0 0
0 D−1

n−1

)
+

pnp
T
n

γn−1
.

With k = n− 2 in (21), we obtain

(23) D−1
n−1 =

(
0 0
0 D−1

n−2

)
+

1

γn−2

(
1

−D−1
n−2βn−2

)(
1

−D−1
n−2βn−2

)T

.

Substituting (23) into (22) and rewriting the first matrix on the right hand side
of (22) as(

0 0
0 D−1

n−1

)
=

(
0 0
0 D−1

n−2

)
+

1

γn−2

 0
1

−D−1
n−2βn−2

 0
1

−D−1
n−2βn−2

T

,

we obtain

D−1 =

(
0 0
0 D−1

n−2

)
+

pn−1p
T
n−1

γn−2
+

pnp
T
n

γn−1
.

Repeatedly using (21), after n− 3 iterations we eventually reach

(24) D−1 =

(
0 0
0 D−1

3

)
+

p4p
T
4

γ3
+ · · ·+

pn−1p
T
n−1

γn−2
+

pnp
T
n

γn−1

indicating that the entry (D−1)i,j ≥ (pn)i(pn)j/γn−1 > 0 since all entries of

D−1
3 are positive, all components of pk (k = 4, 5, . . . , n − 1) are nonnegative,

and all components (pn)i (i = 1, 2, . . . , n) of pn and γk (k = 3, 4, . . . , n− 1) are
positive. □

3. Eigenvalue comparison and the existence of a positive solution

Lemma 3.1. If λ is an eigenvalue of the problem (7) and y is a corresponding
eigenvector, then (i) λ is real and nonzero, and y∗Ay ̸= 0; (ii) if ρ ̸= λ is also
an eigenvalue of the problem (7) and x is an eigenvector corresponding to ρ,
then we have x∗Ay = 0.

Proof. First we note that λy∗Ay = y∗Dy > 0, since D is positive definite and
y ̸= 0. Hence λ and y∗Ay are both nonzero. We can write

(25) λy∗Ay = y∗(λAy) = y∗Dy = (Dy)∗y = (λAy)∗y = λ̄y∗A∗y = λ̄y∗Ay,
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which implies λ = λ̄, i.e., λ is real. Part (ii) follows from the fact that

(λ− ρ)x∗Ay = x∗(λAy)− (ρAx)∗y = x∗Dy − (Dx)∗y = 0.

The proof is complete. □

For the positive definite matrix D, there exists a unique nonsingular lower
triangular matrix L such thatD = LLT . With the help of this Cholesky decom-
position, the eigenvalue problem (7) can be converted to a regular eigenvalue
problem.

Lemma 3.2. Let D = LLT be the Cholesky decomposition of D.

(a) If λ is an eigenvalue of the problem (7) and y is a corresponding eigen-
vector, then 1/λ is an eigenvalue of L−1AL−T and LT y is a corre-
sponding eigenvector.

(b) If α is a nonzero eigenvalue of L−1AL−T and y is a corresponding
eigenvector, then 1/α is an eigenvalue of the problem (7) and L−T y is
a corresponding eigenvector.

Proof. (a) If λ is an eigenvalue of the problem (7) and y is a corresponding
eigenvector, then λ ̸= 0 in view of Lemma 3.1. The equation λAy = Dy is
equivalent to the equation

(
L−1AL−T

)
LT y = 1

λL
T y with LT y ̸= 0 since L is

nonsingular and y ̸= 0. The result in (b) can be proved similarly. □

Theorem 3.3. Let D = LLT be the Cholesky decomposition of D and let p, q be
the numbers of positive and negative elements in the set {ai}ni=1, respectively.
Then there are p positive eigenvalues {λ+

i : i = 1, 2, . . . , p} and q negative
eigenvalues {λ−

i : i = 1, 2, . . . , q} of the problem (7). Moreover,

{1/λ+
i : i = 1, 2, . . . , p} ∪ {1/λ−

i : i = 1, 2, . . . , q}

is the set of all nonzero eigenvalues of L−1AL−T .

Proof. The fact that L−1AL−T is real and symmetric implies that there exists
an orthogonal matrix Q such that

(26) QTL−1AL−TQ = diag(α1, α2, . . . , αn),

where α1 ≥ α2 ≥ · · · ≥ αn are all eigenvalues of L−1AL−T . Let x = L−TQz.
It is seen from (26) that

n∑
i=1

αiz
2
i = zTdiag(α1, α2, . . . , αn)z = xTAx =

n∑
i=1

aix
2
i

are two representations of the real quadratic form xTAx. In view of the Law of
Inertia for Quadratic Forms [4, Theorem 1, p. 297], we immediately deduce that
the numbers of positive and negative elements in the set {αi : i = 1, 2, . . . , n}
are p and q, respectively.

Thus, in view of Lemmas 3.1 and 3.2, we see that {1/αi : αi ̸= 0} gives the
complete set of eigenvalues of the problem (7). Therefore, {λ+

i = 1/αi : i =
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1, 2, . . . , p} and {λ−
i = 1/αn−i+1 : i = 1, 2, . . . , q} are the sets of all the positive

and all the negative eigenvalues of the problem (7), respectively. □

All the eigenvalues of the problem (7) are related to these of L−1AL−T as
specified in Theorem 3.3. We will use this relationship to study the monotone
behavior of all eigenvalues as the coefficients of the problem change. To this
end, we consider the following two problems

(27) Du− λA(t)u = 0,

where A(t) = diag
(
a
(t)
1 , a

(t)
2 , . . . , a

(t)
n−1, a

(t)
n

)
, t = 1, 2.

Theorem 3.4. Let pt and qt be the numbers of positive and negative elements

in the set
{
a
(t)
1 , a

(t)
2 , . . . , a

(t)
n

}
, respectively, for t = 1, 2 and let

{λ−
qt(t) ≤ · · · ≤ λ−

2 (t) ≤ λ−
1 (t)} and {λ+

1 (t) ≤ λ+
2 (t) ≤ · · · ≤ λ+

pt
(t)}

be the sets of all the negative and all the positive eigenvalues of problems (27),

respectively. If a
(1)
i ≥ a

(2)
i for 1 ≤ i ≤ n, then

(28) λ+
k (1) ≤ λ+

k (2), 1 ≤ k ≤ p2 and λ−
k (1) ≤ λ−

k (2), 1 ≤ k ≤ q1.

If a
(1)
i > a

(2)
i , 1 ≤ i ≤ n, then all the inequalities of (28) are strict.

Proof. Let LLT be the Cholesky decomposition of D. Define

α+
k =

1

λ+
k (1)

, 1 ≤ k ≤ p1, α−
k =

1

λ−
k (1)

, 1 ≤ k ≤ q1,(29)

β+
k =

1

λ+
k (2)

, 1 ≤ k ≤ p2, β−
k =

1

λ−
k (2)

, 1 ≤ k ≤ q2.(30)

In view of Theorem 3.3, by adding n − (p1 + q1) zeros to (29) and adding
n− (p2 + q2) zeros to (30), we deduce that

(31) α+
1 ≥ α+

2 ≥ · · · ≥ α+
p1

> 0 = · · · = 0 > α−
q1 ≥ · · · ≥ α−

2 ≥ α−
1

and

(32) β+
1 ≥ β+

2 ≥ · · · ≥ β+
p2

> 0 = · · · = 0 > β−
q2 ≥ · · · ≥ β−

2 ≥ β−
1

are all the eigenvalues of L−1A(t)L−T for t = 1, 2, respectively. If a
(1)
i ≥ a

(2)
i

for 1 ≤ i ≤ n, then p2 ≤ p1 and q1 ≤ q2. Furthermore, A(1) − A(2) is positive

semidefinite and so is L−1A(1)L−T −L−1A(2)L−T . If a
(1)
i > a

(2)
i for 1 ≤ i ≤ n,

then A(1) − A(2) is positive definite and so is L−1A(1)L−T − L−1A(2)L−T . It
is seen from the monotonic behavior of eigenvalues of symmetric matrices [2,
Theorem 3, p. 117] that λk(L

−1A(1)L−T ) ≥ λk(L
−1A(2)L−T ) for each k if

a
(1)
i ≥ a

(2)
i , 1 ≤ i ≤ n and that λk(L

−1A(1)L−T ) > λk(L
−1A(2)L−T ) for each

k if a
(1)
i > a

(2)
i , 1 ≤ i ≤ n. Thus, the desired results follow immediately from

(29)-(32). □
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Finally, we end up this paper with an existence result of positive solutions
to the generalized eigenvalue problem (7).

Theorem 3.5. Assume that ai ≥ 0 for i = 1, 2, . . . , n and at least one of
{a1, a2, . . . , an} is positive. Then, the smallest eigenvalue of the problem (7) is
simple and corresponds to a positive eigenvector.

Proof. For any eigenvalue λ of (7) and any eigenvector y corresponding to λ,
we have λ ̸= 0 and y∗Ay ̸= 0 in view of Lemma 3.1. Under the assumption
of the theorem, we further have y∗Ay > 0 and thus, λ = y∗Dy/y∗Ay > 0. In
view of Lemma 3.2 and Theorem 3.3, there is at least one positive eigenvalue
for the problem (7). For the smallest eigenvalue λ1 and its eigenvector y, we
have

D−1Ay =
1

λ1
y.

Thus 1/λ1 is the maximum eigenvalue of D−1A and the y is an eigenvector
corresponding to 1/λ1.

In the case when ai > 0 for all 1 ≤ i ≤ n, all elements of D−1A are positive
due to Theorem 2.3. The result follows immediately from the Perron-Frobenius
Theorem [17, p. 30] applied to D−1A in this case.

If some of the ai’s are zero, then, without loss of any generality, we may
assume that a1 = a2 = · · · = at = 0 and ai > 0 for t < i ≤ n. In such a case,
we can write

D−1A =

(
O C
O B

)
,

where B is an (n− t)× (n− t) matrix and C is a t× (n− t) matrix. In view of
Theorem 2.3, both B and C are positive matrices. Also, 1/λ1 is the maximum
eigenvalue of B. Applying the Perron-Frobenius Theorem to B, we have that
1/λ1 is simple and there exists a positive vector y2 such that By2 = 1

λ1
y2.

Define y1 = λ1Cy2 and ỹ = (yT1 , y
T
2 )

T . Obviously, all components of y1 are
positive and so are the components of ỹ. In addition, D−1Aỹ = 1

λ1
ỹ is satisfied

and so is Dỹ = λ1Aỹ. Hence, the smallest eigenvalue λ1 is simple and ỹ is a
positive eigenvector of the problem (7) corresponding to λ1. □

Because of the linear nature of our problem, the existence result of Theo-
rem 3.5 for the BVPs of the difference equation (3)-(4) is established by first
converting the original problem to a matrix problem and then applying the
well-known Perron-Frobenius Theorem to a positive matrix. For nonlinear
problems, the variational method and the fixed point theorems can be em-
ployed to obtain the existence results for solutions. For example, the reader is
referred to [5,19] for some existence results for fourth order difference equations.

References

[1] R. P. Agarwal, B. Kovacs, and D. O’Regan, Positive solutions for a sixth-order boundary
value problem with four parameters, Bound. Value Probl. 2013 (2013), 184, 22 pp.
https://doi.org/10.1186/1687-2770-2013-184

https://doi.org/10.1186/1687-2770-2013-184


934 J. JI AND B. YANG

[2] R. E. Bellman, Introduction to Matrix Analysis, reprint of the second (1970) edition,

Classics in Applied Mathematics, 19, SIAM, Philadelphia, PA, 1997. https://doi.org/

10.1137/1.9781611971170

[3] J. V. Chaparova, L. A. Peletier, and S. A. Tersian, Existence and nonexistence of non-

trivial solutions of semilinear sixth-order ordinary differential equations, Appl. Math.
Lett. 17 (2004), no. 10, 1207–1212. https://doi.org/10.1016/j.aml.2003.05.014

[4] F. R. Gantmakher, The Theory of Matrices, Vols. 1, Chelsea, New York, 1960.

[5] J. R. Graef, S. Heidarkhani, L. Kong, and M. Wang, Existence of solutions to a discrete
fourth order boundary value problem, J. Difference Equ. Appl. 24 (2018), no. 6, 849–858.

https://doi.org/10.1080/10236198.2018.1428963

[6] J. R. Graef and B. Yang, Boundary value problems for sixth order nonlinear ordinary
differential equations, Dynam. Systems Appl. 10 (2001), no. 4, 465–475.

[7] T. B. Gyulov, Trivial and nontrivial solutions of a boundary value problem for a sixth-

order ordinary differential equation, C. R. Acad. Bulgare Sci. 58 (2005), no. 9, 1013–
1018.
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