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Abstract

A new method to solve a Lyapunov equation for a dis-
crete delay system is proposed. Using this method, a
Lyapunov equation can be solved from a simple linear
equation and N-th power of a constant matrix, where
N is the state delay. Combining a Lyapunov equation
and frequency domain stability, a new stability con-
dition is proposed. The proposed stability condition
ensures stability of a discrete state delay system whose
state delay is not exactly known but only known to lie
in a certain interval.

1 Introduction

State delays are frequently encountered in control
problems of many physical systems. In particular, con-
tinuous state delay systems have been received a lot of
attentions and many stability results have been pro-
posed (see [1] and its references). On the other hand,
there has been less attention to the following discrete
state delay system

z(k + 1) = Aoz (k) + Arz(k — N) (1)

where z € R” is a state. The reason of less attention
is not surprising since system (1) can be transformed
into an equivalent non-delayed system. Introducing an
augmented new state z(k) as follows:

z(k)
.’E(k - 1) nx1
z(k) = , € [—ngm—],
z(k — N)

we can obtain an equivalent non-delayed system

z(k+1) = Anz(k) (2)
where
Ao | A,
I
Ay 2
I

Now stability of (1) can be investigated by simply
checking stability of an ordinary non-delayed system

(2).

However, there are two important cases that stabil-
ity check of the equivalent non-delayed system is not
adequate for stability check of (1). The first case is
when the state delay N is very large, and the second
case is the state delay N is not exactly known but
only known to lie in a certain interval. If N is very
large, then the Ay matrix of (2) is very large (note
An € RUN+Dxn(N+1))  Hepce stability check of An
is numerically demanding and sometimes an unstable
task. If the state delay N is only known to lie in a
certain interval (for example, N € [0, Npmax]), then sta-
bility should be checked for each N € [0, Nmax], which
is also a numerically demanding task, in particular for
large Nmax-

To cope with these two cases, we propose a new non-
conservative stability condition of (1) by carefully in-
vestigating a Lyapunov equation for (2). In Section
2, it is shown that a solution of a Lyapunov equation
for (2) can be transformed into a simple linear equa-
tion, where the only term depending on N is N-th
power of a constant matrix. Hence, even for large N,
the computation is simple. In Section (3), combining
the constant matrix with frequency domain interpre-
tations, we propose a stability condition for (1), where
the state delay N is only known to lie in a certain in-
terval. In Section (4), a numerical example is given
to illustrate the results of this paper. In Section (5),
conclusion is provided.

The works which are most related to ours are [2, 3, 4, 5].
In [2, 3, 4], so-called delay independent stability con-
ditions are considered. The conditions are, however,
conservative when the state delay is known to lie in a
certain interval. In [5], a robust stability problem is
considered for a exactly known delay case.

Notation is standard. For a matrix M € C**" given
by

my - Min

Mnp1 -+ Mpp

cs M is defined by

(:SM:Q:[m11 s Mgy l ,ml'n <o Tpn ]l 6Cﬂ,2xl
Symbols A/, R and ® denote null space, range space

and kronecker product, respectively.
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2 Lyapunov function

The Lyapunov function for (2) is defined by

V(2(k)) £ 2(k) Pz (k),
where symmetric matrix P € RN +UxnN+1) jg parti-
tioned compatible to the partition of z(k) and labeled
as follows:

Po | Pu(N) Po:(1)
3 Pyo(N) | Pir(N,N) Py;(N, 1)
Po(1) | Pi(1,N) Pu(1,1)

It is standard from the following
V(z(k+1)) = V{(z(k)) = z(k) (ANyPAN — P)z(k),

that the system (2) is stable if and only if there exists
P =P > 0 satisfying AyPAy — P < 0. From the
special structure of z(k) (z(k) is stable if and only if
z(k) is stable), the condition Ay PAn —P < 0 can be
modified as in the following lemma.

Lemma 1 System (1) is stable if and only if there ex-
ists P =P’ > 0 satisfying

A;VPAN—P+[§ g]:o (3)

for some Q@ = Q' € R**™ > (.

Matrix P has 3 variables Poo, Po1(i) = Pio(é) and
Py(1,7) = Pi1(4,7)'. The following lemma simplifies
the expression of P using one variable X (¢).

Lemma 2 The solution P satisfying (8) is given by

Py =
P01 ('L) =

X(0),
X(1)As,
P (7, ) _ AllX(i-j)lAla OS]SZSN
i ALX(j-D)A1, 0<i<j<N,
(4)
where X (k), 0 < k < N is given by

ALX(0) Ao + AL X (N) Ay + ALX (N)Ar+
A1 X(0)A - X(0)+Q =0,
X(0) = X(0),
X(k+1)=A,X(k)+ A\ X(N-k), 0<k<N-—1.
(5)

Since the matrix difference equation (third equation)
in (5) is not in an easy form to solve, the matrix differ-
ence equation is transformed into a kind of two point
boundary value problem in the next lemma. Through-
out the paper, Ay is assumed to be nonsingular: we
note that most discrete systems have nonsingular Ag
matrices.

Lemma 3 The matriz difference equation in (5) is
equivalent to the following.

[ csX(k+1) ] _
csX(N—-k-1) X0
[ —~A"1BA A~)(I-BB) ] [ cs X(N — k) ]

where A 2 (I ® A}), B2 (I® AT, and
TE2[T | To| - | T ], TERVXL (7
Row vector Ty, 1 <1< n? is defined by
Tlitynti = €G-1ynsir 1 <6, <1,
where e; € R™X1 1 < | < n? is a row vector whose

l-th element is 1 and all other elements are 0.

For later reference, we define two matrices H (see (6))

and J:
I
E

(8)

Now return to the problem of solving (5) for some Q.
The matrix Lyapunov equation (first equation) and the
matrix difference equation (third equation) are coupled
in (5). To solve the Lyapunov equation, it is necessary
to obtain an X (0) and X (V) pair satisfying the matrix
difference equation, or equivalently (6). The constraint
imposed on any X (0) and X (V) pair satisfying (6) can
be stated using the boundary condition:

B

N B 5[0
H=1 _41p4a A—I(I—BB)]’J‘[I

and the above equation can be expressed using J (see
(8)) as follows:

(I - JHN) [ CCSS))((((ON)) ] =0. (9)

Does an X (0) and X (N) pair satisfying (9) always ex-
ist? For example, if dim (I — JHY) = 0, then only
[(cs X(0))' (cs X(IN))']' = 0 can be the solution to (9).
The next lemma shows that dimN(I — JHY) = n?
and thus there exists a nontrivial X (0) and X (V) pair
satisfying (9).

Lemma 4 The following is satisfied.

dim N (I - JHY) = n2, (10)
The proof of Lemma 4 needs the following lemma.

Lemma 5 If z is an eigenvalue of H, then 271 is also
an eigenvalue of H.
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From the proof of Lemma 5, we note that eigenvalues
and eigenvectors of H (for simplicity, all eigenvalues
of H are assumed to be simple and nonzero) can be
expressed as

1| ¥ x| X]|7 ]

where £ € C***7" is diagonal matrix whose diagonal
elements are eigenvalues of H.

PROOF of Lemma 4. First we will show that
dim N (I = JHN) > 2. (12)
Let v is defined by

AL

where @ € C**1, then v € N(I — JH™) since from

(11)
XY I

_ N

I-JEM |y x || g |e

_[x+vE¥ ] [ X4+vEl —0

Y+XIV |7 | v+ X2V |¢7

for all @ € C***1, Hence we have
dim N (I — JHY) zdimR([ ); )1; ] [ ZIN ]) =n?.

Similarly, we can show that
dim N (~I -~ JHN) > n?. (13)

From (12) and (13), we can conclude that JH" has
only two eigenvalues 1 and thus dim N (I — JHY) =
2n% — N(~I—-JH") < n?% From (12), we obtain (10).

From (10), the singular value decomposition of (I —
JHY) is given by

Y

(I—JHN):U[ P

o]

where U, V are unitary matrices, and ¥; € R*>*"* jsa
diagonal matrix whose diagonal elements are nonzero
singular values of (I — JH"). Thus the constraint on
an X(0) and X (N) pair satisfying (6) is given by

cs X(0)

[ R R2]—[210]V*[ X ] =0. (14)

Using (14), the coupled equations (5) can be reduced
to a simple linear equation.

Theorem 1 An X(0) and X(N) pair satisfying (5)
can be computed by the following equation:

(G0 2] ]-[759] w

where Ry and Ry are from (14), and

(1,1) (Ao ® Ap) + (4 ® A7) — 1
(1,2) (Af ® AT + (4] ® Ap).

li> il

Remark 1 Once X(0) and X(N) are obtained,
X(), 2 <i < N -1 can be computed easily from
(6). For example, X (1) and X (N — 1) are computed

b
y [ cs;()l(v(l—) 1 ] -4 [ CCSS)?((](\)[)) ] |

Hence the Lyapunov equation (8) can be solved from a
simple linear equation (15) and up to N-th power of
the constant matriz H.

3 Stability condition

In this section, we show that eigenvalues and eigenvec-
tors of H are closely connected with frequency domain
stability of (1). Based on this observation, we propose
a new stability condition which ensure stability of (1)
for all N € [0, Npax]-

System (1) is stable if and only if z(k + 1) = Ajz(k) —
Alz(k — N) is stable. Thus (1) is stable if and only if
the characteristic equation

det(2] — Ay — Alz=N) =0 (16)
has all its roots inside the unit circle. Now suppose
that (1) is stable for N = 0 (i.e., all roots of (16) lie
inside the unit circle) and unstable N = Npay (ie.,
at least one root of (16) is not inside the unit circle).
Then since a root of

det(z] —Apg— A1z7")=0,7eR>0 (17)
varies continuously with respect to the change of r,
there exists 7 € (0, Nax] such that (17) has a root on
the unit circle. From this observation, we obtain the
following lemma.

Lemma 6 If (1) is stable for N = 0 and (17) does
not have a root on the unit circle for all real number
7 € [0, Nmax), then (1) is stable for N € [0, Nmax]-

The next theorem shows that unit circle roots of (17)
can be checked from eigenvalues of H.

Theorem 2 If (17) has a unit circle root, then the
root is an eigenvalue of H.

Using Theorem 2, we can compute Nmax such that (1)
is stable for all N € [0, Npax]-

Lemma 7 Lete™i, w; € R > 0 be a unit circle eigen-
value of H and v; be the corresponding eigenvector. Let
€ R > 0 be defined by

o [ [mOn(Asggematote ) w20
Oa w; = 0’
(18)
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where k < n? can be chosen arbitrarily as long as k-
th element of v; is nonzero. If (1) is stable for N =0
and Npmax 15 the greatest integer not larger than minr;,
then (1) is stable for all N € [0, Nmax].

One extreme case is Npax = 00, that is (1) is stable
for all N > 0. In this case, system (1) is called to be
delay independently stable (2, 3.

Lemma 8 If (1) is stable for N = 0 and H does not
have a unit circle eigenvalue, then (1) is stable for all
N >0.

4 Numerical example

Consider the following system

o) = [ 5 §F Jetor| 61 0%
(19)

The system is stable for N = 0. A and B matrices of
H are given by

03 0 0 0
015 0.7 0 0

A=1"%9 0 03 o0 |
0 0 015 07
01 0 01 0
02 0 -04 O
B=1 6 01 0o 01 |
0 —0.2 0 —04

respectively. Eigenvalues of H are given by

{0.2919,0.3012, 0.6826, 0.9721 % j0.2346,
1.4650, 3.3205, 3.4256 ).

Note that there exists a unit circle root 0.9721 +
j0.2346 = e/, w > 0, and w = 0.2368. The corre-
sponding eigenvector v is given by

v=[-0.0784, —0.2921, —0.1687, —0.6155,
—-0.0189, 0.1988, —0.0299, —0.678 |'.

From (18), we obtain r = 10.2483, and thus Npax =
10. Hence we can conclude that (19) is stable for N €
[0,10]. In fact, by checking Ay, we can verify that (19)
is stable for N < 10 and unstable N = 11.

5 Conclusion

In this paper, we have proposed an easy method to
solve a Lyapunov equation for a state delay system.
Using this method, we can solve a Lyapunov equation
even for large N without causing numerical problems.
Based on the relationship between frequency domain
stability and a constant matrix that appears in a Lya-
punov equation, we have proposed a new stability con-
dition. The proposed stability condition ensures sta-
bility of a discrete state delay system whose state delay

| stk-m).

is not exactly known but known to lie in a certain in-
terval.
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