• Title/Summary/Keyword: Standard cell library

Search Result 196, Processing Time 0.025 seconds

Low Power Symbol Detector for MIMO Communication Systems (MIMO 통신 시스템을 위한 저전력 심볼 검출기 설계 연구)

  • Hwang, You-Sun;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.220-226
    • /
    • 2010
  • In this paper, an low power symbol detector is proposed for MIMO communication system with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing (SM) mode and spatial diversity (SD) mode for MIMO transmission technique, and shows the optimal maximum likelihood (ML) performance. Also, by sharing the hardware block and using the dedicated clock MIMO modes, the power of the proposed architecture is dramatically decreased. The proposed symbol detector was designed in hardware description language (HDL) and synthesized to logic gates using a $0.13-{\mu}m$ CMOS standard cell library. The power consumption was estimated by using Synopsys Power CompilerTM, which is reduced by maximum 85%, compared with the conventional architecture.

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

A Cryptoprocessor for AES-128/192/256 Rijndael Block Cipher Algorithm (AES-128/192/256 Rijndael 블록암호 알고리듬용 암호 프로세서)

  • 안하기;박광호;신경욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.257-260
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm“Rijndael”. To achieve high throughput rate, a sub-pipeline stage is inserted into the round transformation block, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. For area-efficient and low-power implementation the round transformation block is designed to share the hardware resources in encryption and decryption. An efficient scheme for on-the-fly key scheduling, which supports the three master-key lengths of 128-b/192-b/256-b, is devised to generate round keys in the first sub-pipeline stage of each round processing. The cryptoprocessor designed in Verilog-HDL was verified using Xilinx FPGA board and test system. The core synthesized using 0.35-${\mu}{\textrm}{m}$ CMOS cell library consists of about 25,000 gates. Simulation results show that it has a throughput of about 520-Mbits/sec with 220-MHz clock frequency at 2.5-V supply.

  • PDF

AES-128/192/256 Rijndael Cryptoprocessor with On-the-fly Key Scheduler (On-the-fly 키 스케줄러를 갖는 AED-128/192/256 Rijndael 암호 프로세서)

  • Ahn, Ha-Kee;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.33-43
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm "Rijndael". To achieve high throughput rate, a sub-pipeline stage is inserted into a round transformation block, resulting that two consecutive round functions are simultaneously operated. For area-efficient and low-power implementation, the round transformation block is designed to share the hardware resources for encryption and decryption. An efficient on-the-fly key scheduler is devised to supports the three master-key lengths of 128-b/192-b/256-b, and it generates round keys in the first sub-pipeline stage of each round processing. The Verilog-HDL model of the cryptoprocessor was verified using Xilinx FPGA board and test system. The core synthesized using 0.35-${\mu}m$ CMOS cell library consists of about 25,000 gates. Simulation results show that it has a throughput of about 520-Mbits/sec with 220-MHz clock frequency at 2.5-V supply.

A Design nd Implementation of an IEEE 802.11a Modem for a Home Network of high speed (고속 홈네트워크를 위한 IEEE 802.11a 모뎀 설계와 구현)

  • Seo Jung-Hyun;Lee Je-Hoon;Cho Kyoung-Rok;Park Kwang-Roh
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.1 no.2
    • /
    • pp.4-18
    • /
    • 2002
  • In this paper, we propose the new design method for the OFDM based modem that is considerd a standard of wireless communication in indoor environments. We designed a improved FFT/IFFT in order to satisfy a data rate $6{\sim}54$Mbps required homenetworking of high speed and a improved channel equalization circuit using pilot signals for modile environments. And we designed a carrier offset estimator that uses the $tan^{-1}$ circuit to organize a memory structure. All steps are verifed performance through a FPGA and are implemented ASIC to use a standard library cell.

  • PDF

Low Power Implementation of Integrated Cryptographic Engine for Smart Cards (스마트카드 적용을 위한 저전력 통합 암호화 엔진의 설계)

  • Kim, Yong-Hee;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.80-88
    • /
    • 2008
  • In this paper, the block cipher algorithms, 3-DES(Triple Data Encryption Standard), AES(Advanced Encryption Standard), SEED, HASH(SHA-1), which are domestic and international standards, have been implemented as an integrated cryptographic engine for smart card applications. For small area and low power design which are essential requirements for portable devices, arithmetic resources are shared for iteration steps in each algorithm, and a two-level clock gating technique was used to reduce the dynamic power consumption. The integrated cryptographic engine was verified with ALTERA Excalbur EPXA10F1020C device, requiring 7,729 LEs(Logic Elements) and 512 Bytes ROM, and its maximum clock speed was 24.83 MHz. When designed by using Samsung 0.18 um STD130 standard cell library, the engine consisted of 44,452 gates and had up to 50 MHz operation clock speed. It was estimated to consume 2.96 mW, 3.03 mW, 2.63 mW, 7.06 mW power at 3-DES, AES, SEED, SHA-1 modes respectively when operating at 25 MHz clock. We found that it has better area-power optimized structure than other existing designs for smart cards and various embedded security systems.

High-Speed Reed-Solomon Decoder Using New Degree Computationless Modified Euclid´s Algorithm (새로운 DCME 알고리즘을 사용한 고속 Reed-Solomon 복호기)

  • 백재현;선우명훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.459-468
    • /
    • 2003
  • This paper proposes a novel low-cost and high-speed Reed-Solomon (RS) decoder based on a new degree computationless modified Euclid´s (DCME) algorithm. This architecture has quite low hardware complexity compared with conventional modified Euclid´s (ME) architectures, since it can remove completely the degree computation and comparison circuits. The architecture employing a systolic away requires only the latency of 2t clock cycles to solve the key equation without initial latency. In addition, the DCME architecture using 3t+2 basic cells has regularity and scalability since it uses only one processing element. The RS decoder has been synthesized using the 0.25${\mu}{\textrm}{m}$. Faraday CMOS standard cell library and operates at 200MHz and its data rate suppots up to 1.6Gbps. For tile (255, 239, 8) RS code, the gate counts of the DCME architecture and the whole RS decoder excluding FIFO memory are only 21,760 and 42,213, respectively. The proposed RS decoder can reduce the total fate count at least 23% and the total latency at least 10% compared with conventional ME architectures.

New Enhanced Degree Computationless Modified Euclid's Algorithm and its Architecture for Reed-Solomon decoders (Reed-Solomon 복호기를 위한 새로운 E-DCME 알고리즘 및 하드웨어 구조)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.820-826
    • /
    • 2007
  • This paper proposes an enhanced degree computationless modified Euclid's(E-DCME) algorithm and its architecture for Reed-Solomon decoders. The proposed E-DCME algorithm has shorter critical path delay that is $T_{mult}+T_{add}+T_{mux}$ compared with the existing modified Euclid's algorithm and the degree computationless modified Euclid's(DCME) algorithm since it uses new initial conditions. The proposed E-DCME architecture employing a systolic array requires only 2t-1 clock cycles to solve the key equation without initial latency. In addition, the E-DCME architecture consisting of 3t basic cells has regularity and scalability since it uses only one processing element. The E-DCME architecture using the $0.18{\mu}m$ Samsung standard cell library consists of 18,000 gates.

A Design of the IP Lookup Architecture for High-Speed Internet Router (고속의 인터넷 라우터를 위한 IP 룩업구조 설계)

  • 서해준;안희일;조태원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7B
    • /
    • pp.647-659
    • /
    • 2003
  • LPM(Longest Prefix Matching)searching in If address lookup is a major bottleneck of IP packet processing in the high speed router. In the conventional lookup table for the LPM searching in CAM(Content Addressable Memory) the complexity of fast update take 0(1). In this paper, we designed pipeline architecture for fast update of 0(1) cycle of lookup table and high throughput and low area complexity on LPM searching. Lookup-table architecture was designed by CAM(Content Addressable Memory)away that uses 1bit RAM(Random Access Memory)cell. It has three pipeline stages. Its LPM searching rate is affected by both the number of key field blocks in stage 1 and stage 2, and distribution of matching Point. The RTL(Register Transistor Level) design is carried out using Verilog-HDL. The functional verification is thoroughly done at the gate level using 0.35${\mu}{\textrm}{m}$ CMOS SEC standard cell library.

Efficient Pipeline Architecture of CABAC in H.264/AVC (H.264/AVC의 효율적인 파이프라인 구조를 적용한 CABAC 하드웨어 설계)

  • Choi, Jin-Ha;Oh, Myung-Seok;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.61-68
    • /
    • 2008
  • In this paper, we propose an efficient hardware architecture and algorithm to increase an encoding process rate and implement a hardware for CABAC (Context Adaptive Binary Arithmetic Coding) which is used with one of the entropy coding ways for the latest video compression technique, H.264/AVC (Advanced Video Coding). CABAC typically provides a better high compression performance maximum 15% compared with CAVLC. However, the complexity of operation of CABAC is significantly higher than the CAVLC. Because of complicated data dependency during the encoding process, the complexity of operation is higher. Therefore, various architectures were proposed to reduce an amount of operation. However, they have still latency on account of complicated data dependency. The proposed architecture has two techniques to implement efficient pipeline architecture. The one is quick calculation of 7, 8th bits used to calculate a probability is the first step in Binary arithmetic coding. The other is one step reduced pipeline arcbitecture when the type of the encoded symbols is MPS. By adopting these two techniques, the required processing time was reduced about 27-29% compared with previous architectures. It is designed in a hardware description language and total logic gate count is 19K using 0.18um standard cell library.