• Title/Summary/Keyword: Stainless Steel (STS)

Search Result 361, Processing Time 0.025 seconds

High Temperature Gas Nitriding of Austenitic Stainless Steels (오스테나이트계 스테인리스강의 고온질화)

  • Kong, J.H.;Yoo, D.K.;Park, J.H.;Lee, H.W.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.311-317
    • /
    • 2007
  • This study examined the phase changes, nitride precipitation and variation in mechanical properties of STS 304, STS 321 and STS 316L austenitic stainless steels after high temperature gas nitriding (HTGN) at temperature ranges from $1050^{\circ}C\;to\;1150^{\circ}C$. Fine round type of $Cr_2N$ nitrides were observed in the surface layers of 304 and 316L steels, even more in STS 321. Additionally, square type of TiN was found in STS 321 austenitic matrix too. As a result of many precipitates in the surface layer of the STS 321, it was seen $370{\sim}470Hv$ hardness variation depending on the HTGN treatment conditions, and interior region of austenite represented 150Hv. The surface hardness value of STS 304 and STS 316L showed $255{\sim}320Hv$, respectively. The nitrogen content was shown 0.27, 1.7 and 0.4% respectively at the surface layers of the STS 304, STS 321 and STS 316L. After the HTGN it was shown the improvement of corrosion resistance of the STS 321 and STS 316L compared with solution annealed steels in the solution of 1N $H_2SO_4$ whereas the STS 304 was not.

Evaluation of Corrosion Property of Welding Zone of Stainless Steel by Laser Welding (Laser 용접한 스테인리스강의 용접부위의 부식특성에 관한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.64-69
    • /
    • 2012
  • Laser welding was carried out on austenitic 304 (STS 304) and 22 APU stainless steels. In this case, the differences between the corrosion characteristics of the welding zones of the two stainless steels were investigated using electrochemical methods. The Vickers hardness values of the weld metal (WM) zones in both cases, the STS 304 and 22 APU stainless steels, showed relatively higher values than those of other welding zones. The corrosion current densities of the heat affected zone (HAZ) of the 22 APU and the base metal (BM) zone of the STS 304 exhibited the highest values compared to the other welding zones. It is generally accepted that when STS 304 stainless steel is welded using a general welding method, intergranular corrosion is often observed at the grain boundary because of its chromium depletion area. However, when laser welding was performed on both the STS 304 and 22 APU stainless steels, no intergranular corrosion was observed at any of the welding zones. Consequently, it is considered that the intergranular corrosion of stainless steel can be controlled with the application of laser welding.

The Effect of Welding Method on the Electrochemical Behavior of Austenitic Stainless Steel Sheet

  • Kim, Young-Hune;Kim, Kyoo-Young
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.122-128
    • /
    • 2010
  • The corrosion of the flexible tube in the automobile exhaust system is caused by the ambient water and chloride ions. Since welding is one of the key processes for the flexible tube manufacturing, it is required to select a proper welding method to prevent the flexible tube corrosion and to increase its lifetime. There are many studies about the efficiency of the welding method, but no systematic study is performed for the effect of welding method on the corrosion property of the austenitic stainless weldment. The aim of the present study is to provide information on the effect of two different welding methods of TIGW (tungsten inert gas welding) and PAW (plasma arc welding) on the corrosion property of austenitic stainless steel weldment. Materials used in this study were two types of the commercial austenitic stainless steel, STS321 and XM15J1, which were used for flexible tube material for the automotive exhaust system. Microstructure was observed by using optical microscopy (OM) and scanning electron microscopy (SEM). To evaluate the corrosion behavior, potentiodynamic and potentiostatic tests were performed. The chemical state of the passive film was analyzed in terms of XPS depth profile. Metallurgical analysis show that the ferrite content in fusion zone of both STS321 and XM15J1 is higher when welded by PAW than by TIGW. The potentiodynamic and potentiostatic test results show that both STS321 and XM15J1 have higher transpassive potential and lower passive current density when welded by PAW than by TIGW. XPS analysis indicates that the stable $Cr_2O_3$ layer at the outermost layer of the passive film is formed when welded by PAW. The result recommends that PAW is more desirable than TIGW to secure corrosion resistance of the flex tube which is usually made of austenitic stainless steel.

The Effects of the Testing Temperatures on the Mechanical Properties of the Stainless Steel(STS301CSP) for Flat Spring (박판 스프링용 스테인리스강재(STS301CSP)의 시험온도에 따른 기계적 특성평가)

  • 류태호;원시태;박상언;임철록
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.390-395
    • /
    • 2003
  • This study examined the effects of the testing temperature on the mechanical properties of the stainless steels (STS301CSP-3/4H and STS301CSP-H) for flat spring. Hardness test and fatigue test were performed at room temperature (2$0^{\circ}C$ Tensile testandcreeptestwere performed attemperature range 2$0^{\circ}C$~10$0^{\circ}C$. The micro-victors hardness values of STS301CSP-3/4H and STS301CSP-H were HV=443 and HV=488. respectively. The Elastic modulus, tensile strength, yield strength and strain of these materials were decreased with increasing testing temperature. respectively. The maximum creep strain for 100hr atcreep temperature (10$0^{\circ}C$~20$0^{\circ}C$ and creep stress (Tensile strength$\times$50%) of these materials were 0.53%~0.58%. The fatigue limit of STS301CSP-3/4H and STS301CSP-H were 64.5Kgf/mm$^2$ and 67.4Kgf/mm$^2$, respectively.

  • PDF

Effect of Stainless Steel Properties on Performance of Multi-layer Bellows (다층형 벨로우즈의 성능에 미치는 스테인리스강 물성의 영향)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Lee, R.G.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • Generally ferritic stainless steels are used for parts of exhaust system in commercial vehicle, because they have many advantages as low price and high corrosion resistant compared with austenitic stainless steels. Even though ferritic stainless steels have such various merits, austenitic stainless steels have been used to manufacture multi-layer bellows with complex geometry because of their high ductility. Recently, the mechanical properties of the ferritic stainless steels are getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of multi-layer bellows made of ferritic stainless steel like MH1 and 443CT was studied. Tensile test, ridging test and corrosion test were carried out to observe material properties of STS304, MH1 and 443CT. Three types of prototype bellows were made using STS304, MH1 and 443CT stainless steels, and stiffness and fatigue tests were carried out to evaluate performance of the prototype bellows.

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing (스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성)

  • Hwang, Chul-Sung;Park, Kyoung Tae;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.

Experimental study on the severe deep drawing for complex cylindrical housing of STS 305 stainless steel (스테인리스 강 STS305의 디프 드로잉 가공에 관한 실험적 연구)

  • Kim, Doo-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.439-444
    • /
    • 1998
  • Recently many automotive parts have been made with stainless steels by deep drawing processes, But there are various problems occurred in deep drawing works of stainless steels compared with low carbon steels. For the severe deep drawing of complex cylindrical housing optimum process planning is required to eliminate intermediate annealing improve shape accuracy and maintain surface integrity without drawing defects such as tears wrinkles and scratches or galling. Therefore in this study a sample process planning of the severe of the severe deep drawing process is applied to a complex cylindrical housing needed for a 6 multi-stepped deep drawing of type STS 305 . A series of experiments are performed to investigate optimum process variables such as drawing rate radius and clearance. Through experiments the variations of the thickness strain distribution and hardness distribution in each drawing step are observed. Also the effects of other factors on formability such as drawing oil, blank holding force and die geometry are examined and discussed.

  • PDF

Influence of Phase Evolution and Texture on the Corrosion Resistance of Nitrogen Ion Implanted STS 316L Stainless Steel (질소 이온이 주입된 STS 316L 스테인리스 강에서의 상변화와 집합조직이 내식성에 미치는 영향)

  • Jun, Shinhee;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.293-299
    • /
    • 2015
  • In this study, nitrogen ions were implanted into STS 316L austenitic stainless steel by plasma immersion ion implantation (PIII) to improve the corrosion resistance. The implantation of nitrogen ions was performed with bias voltages of -5, -10, -15, and -20 kV. The implantation time was 240 min and the implantation temperature was kept at room temperature. With nitrogen implantation, the corrosion resistance of 316 L improved in comparison with that of the bare steel. The effects of nitrogen ion implantation on the electrochemical corrosion behavior of the specimen were investigated by the potentiodynamic polarization test, which was conducted in a 0.5 M $H_2SO_4$ solution at $70^{\circ}C$. The phase evolution and texture caused by the nitrogen ion implantation were analyzed by an X-ray diffractometer. It was demonstrated that the samples implanted at lower bias voltages, i.e., 5 kV and 10 kV, showed an expanded austenite phase, ${\gamma}_N$, and strong (111) texture morphology. Those samples exhibited a better corrosion resistance.

Study on Strain States during Roll-Cladding of Stainless Steel and Aluminum (스테인리스강과 알루미늄 롤-클래드 시 변형상태 연구)

  • Kim J. K.;Huh M. Y.;Jee K. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.221-224
    • /
    • 2004
  • The clad samples of five plies of sheets comprising ferritic stainless steel (STS) and aluminum (Al) were prepared by roll-cladding at $350^{\circ}C$. The evolution of strain states and textures during roll-cladding of STS430/AA3003/AA3003/AA3 003/STS430 and STS430/AA3003/STS430/AA3003/STS430 was investigated by measurements of crystallographic textures and by simulations with the finite element method (FEM). Because the deformation mainly occurs in the Al layer during roll-cladding, the present investigation was focused on the Al layers located. The stacking sequence of sheet materials in the clad samples played an important role in the evolution of strain states during roll-cladding.

  • PDF