• Title/Summary/Keyword: Stable isotope compositions

Search Result 58, Processing Time 0.022 seconds

Stable Isotope of the Nakcheon, Eunchi and Jungbong Gold-Silver Deposits in the Northern Taebagsan Mining District (태백산광화대 북부 낙천, 은치, 중봉 금-은광상의 안정동위원소 연구)

  • Hwang, Jeong;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.159-170
    • /
    • 1996
  • The gold-silver deposits of the Nakcheon, Eunchi and Jungbong mine in the northern Taebagsan mining district are composed of fissure fil1ing veins emplaced in Precambrian meta-sediments and Jungbongsan granite. Based on the changes of ore texture and mineralogy, ore mineral chemistry, fluid inclusion and mineralizing condition, a regional zoning is recognized from the Nakcheon to the Eunchi and Jungbong ore deposits, and this trend of zoning is also recognized by stable isotope compositions. Stable isotope compositions show that the source of su1fur and carbon is mainly igneous origin, and the water of ore fluid in the Nakcheon ore deposits is mainly magmatic origin but much of meteoric water is involved in ore fluid of the Eunchi and Jungbong ore deposits. The ore deposits of study area is polymetallic meso to epithermal type genetically related to the acidic igneous pluton. Due to the differntial erosion level and mineralized depth, each ore deposits has a slightly different characteristic of mineralization; The Nakcheon ore deposits belong to meso-epithermal type, but the Eunchi and Jungbong ore deposits belong to epithermal type.

  • PDF

Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type

  • Chung, Ill-Min;Lee, Taek-Jun;Oh, Yong-Taek;Ghimire, Bimal Kumar;Jang, In-Bae;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.195-200
    • /
    • 2017
  • Background: The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. Methods: C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. Results: The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The ${\delta}^{15}N_{AIR}$ and ${\delta}^{34}S_{VCDT}$ values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the ${\delta}^{13}C_{VPDB}$ value. The combination of ${\delta}^{13}C_{VPDB}$, ${\delta}^{15}N_{AIR}$, or ${\delta}^{34}S_{VCDT}$ in ginseng, except the combination ${\delta}^{13}C_{VPDB}-^{34}S_{VCDT}$, showed a better discrimination depending on soil type or fertilizer type. Conclusion: This case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.

Temporal and Spatial Variation of Stable Isotopic Compositions of Surface Water and Ground Water in a Small Catchment, Muju, Korea (무주지역 소유역내 지표수와 지하수의 안정동위원소 조성의 시공간적 변화)

  • 한원식;우남칠;이광식;이기철
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.329-338
    • /
    • 2003
  • The purpose of this study is to identify the temporal and spatial variation of stable isotopic compositions of surface waters and shallow ground waters at a local watershed(100$Km^2$) near the Muju area. For oxygen and hydrogen isotope analysis, water samples were collected from 19-22 sites during August, October 2001, through April 2002. Seasonal variation in the isotopic compositions of surface waters was clearly shown. However, the degree of such isotopic variation was highly attenuated in shallow ground waters because of mixing with preexisting ground waters. Isotope values of surface waters and ground waters were very similar in each season, indicating that precipitation/ground water/surface water interactions were very active and continuous in the watershed. Stable isotopic ratios of surface waters in the study area were lighter than those of the downstream reach of Geum River on south, indicating “latitude effect”. Both “altitude effect” and “amount effect” were also shown in the stable isotopic ratios of surface waters in the study area as well as seasonal variation of stable isotopes.

A Review on Identification Methods for TCE Contamination Sources using Stable Isotope Compositions (안정동위원소 조성을 이용한 TCE 오염원 규명방법 소개)

  • Park, Youngyun;Lee, Jin-Yong;Na, Won Jong;Kim, Rak-Hyeon;Choi, Pil Sung;Jun, Seong-Chun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • This study was performed to summarize application of ${\delta}^{13}C$, ${\delta}^{37}Cl$ and ${\delta}D$ of trichloroethylene (TCE) to studies on environmental forensic field regarding identification of TCE sources and evaluation of contribution of TCE to groundwater using data collected from literatures. ${\delta}^{13}C$, ${\delta}^{37}Cl$ and ${\delta}D$ of TCE give some information regarding sources of TCE because they show specific value according to manufacturing method. Also, TCE do not show a significant isotopic fractionation owing to adsorption and dilution. The isotopic fractionation mainly occurs by biodegradation. In addition, isotopic fractionation factor for TCE is different according to a kind of microorganism participated in biodegradation. However, the isotopic data of TCE have to be applied with chemical compositions of TCE and other hydrogeologic factors because isotopic fractionation of TCE is influenced by various factors.

Winter Food Resource Partitioning between Sympatric Gadus macrocephalus and G. chalcogrammus in the Northern Coast of East Sea, South Korea Inferred from Stomach Contents and Stable Isotopes Analyses (위내용물 분석과 안정동위원소 분석을 이용한 겨울철 동해 북부 연안에 출현하는 명태(Gadus chalcogrammus)와 대구(G. macrocephalus)의 먹이분할 연구)

  • Park, Joo Myun;Jung, Hae Kun;Lee, Chung Il;Park, Hyun Je
    • Korean Journal of Ichthyology
    • /
    • v.34 no.2
    • /
    • pp.102-112
    • /
    • 2022
  • This study investigated dietary habits and intra- and inter-specific food resource partitioning of co-occurring walleye pollock (Gadus chalcogrammus) and Pacific cod (G. macrocephalus) from the waters off the north-eastern coast of South Korea using stomach contents and stable isotopes (δ13C and δ15N) analyses. Both species are mesopelagic carnivores that consumed mainly benthopelagic crustaceans, but teleosts were also abundant in the diet of Pacific cod. Non-metric multidimensional scaling (nMDS) ordination and permutational multivariate analysis of variance (PERMANOVA) of dietary data revealed significant intra- and inter-specific dietary differences, i.e., food resource partitioning. Nitrogen stable isotope values (δ15N) were similar between walleye pollock and Pacific cod, but carbon stable isotope values (δ13C) were significant different, suggesting different trophic positioning. Canonical analysis of principal coordinate (CAP) ordination plot further demonstrated that differences in the type and range of prey ingested by the two species contributed such an inter-specific difference in the diet compositions. Ontogenetic changes in diet compositions were evident. As walleye pollock, they preyed more upon carid shrimps and cephalopods, but no such trend was observed in the diets of Pacific cod. While stable isotope values indicated that large-sized specimens of both species were significantly enriched in 15N relative to smaller conspecifics thus supporting these data. Consequently, in this study, both methodologies, i.e., stomach contents and stable isotope analyses, provided evidence of inter- and/or intra-specific dietary segregations and trophic niche partitioning between co-occurring walleye pollock and Pacific cod off eastern Korean waters.

A Review on the Application of Stable Water Vapor Isotope Data to the Water Cycle Interpretation (수증기안정동위원소의 물순환 해석에의 적용에 대한 고찰)

  • Lee, Jeonghoon;Han, Yeongcheol;Koh, Dong-Chan;Kim, Songyi;Na, Un-Sung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2015
  • Studies using stable water vapor isotopes have been recently conducted over the past two decades because of difficulties in analysis and sample collection in the past. Stable water vapor isotope data provide information of the moisture transport from ocean to continent, which are also used to validate an isotope enabled general circulation model for paleoclimate reconstructions. The isotopic compositions of groundwater and water vapor also provide a clue to how moisture moves from soil to atmosphere by evapotranspiration. International Atomic Energy Agency designates the stations over the world to observe the water vapor isotopes. To analyze the water vapor isotopes, a cryogenic sampling method has been used over the past two decades. Recently, two types of laser-based spectroscopy have been developed and remotely sensed data from satellites have the global coverage. In this review, measurements of isotopic compositions of water vapor will be introduced and some studies using the water vapor isotopes will also be introduced. Finally, we will suggest the future study in Korea.

Applications of Isotope Ratio Infrared Spectroscopy (IRIS) to Analysis of Stable Isotopic Compositions of Liquid Water (동위원소비 적외선 분광법(IRIS)을 이용한 물 안정동위원소 분석)

  • Jung, Youn-Young;Koh, Dong-Chan;Lee, Jeonghoon;Ko, Kyung-Seok
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.495-508
    • /
    • 2013
  • Recently, stable isotopes (${\delta}^{18}O$ and ${\delta}D$) of water are increasingly analyzed using laser-based technologies. These methods have advantages over Isotope Ratio Mass Spectrometry (IRMS) in that they can be used for in-situ measurements and require much less maintenance and preparation work. Two types of laser-based methods are currently available, which have different analytical principles; OA-ICOS (off-axis integrated cavity output spectroscopy) and WS-CRDS (wavelength-scanned cavity ring-down spectroscopy). In the WS-CRDS instrument, water is vaporized at controlled environment and transferred to an optical cavity by nitrogen carrier gas, and stable isotopic compositions of water vapor are measured using the degree of absorbance of specific wavelengths and the ratios of attenuation time of the laser intensity with the sensitivity of ppb to tens of ppt level. In this study, we introduce the principle of the WS-CRDS technology and the performance results including stability and comparisons with Isotope Ratio Mass Spectrometry (IRMS) and suggest possible applications of various topics in isotope hydrology.

Inter-laboratory Comparison of Stable Carbon and Nitrogen Isotopic Composition Data Using Elemental Analyzer-isotope Ratio Mass Spectrometers

  • Kim, Jung-Hyun;Kang, Sujin;Bong, Yeon-Sik;Park, Kwangkyu;Kang, Tae-Woo;Park, Yong-Se;Kim, Dahae;Choi, Seunghyun;Joo, Young Ji;Choi, Bohyung;Nam, Seung-Il;Lee, Sang-Mo;Shin, Kyung-Hoon
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.229-236
    • /
    • 2018
  • In this study, inter-laboratory comparison was done using elemental analyzer-isotope ratio mass spectrometers (EA-IRMSs) to determine carbon and nitrogen contents as well as stable carbon and nitrogen isotopic compositions (${\delta}^{13}C$ and ${\delta}^{15}N$) of five environmental samples containing lake and marine sediments, higher plant leaves, and fish muscle, and one organic analytical standard (Protein (Casein) Standard OAS). Five national laboratories participated in this comparison study, and each laboratory analyzed all five samples and the analytical standard. Results showed that variations in total organic carbon (TOC) and total nitrogen (TN) contents as well as ${\delta}^{13}C_{TOC}$ and ${\delta}^{15}N_{TN}$ values among the laboratories were large compared to the analytical uncertainties. The results highlighted the inhomogeneity of the test samples and thus, the need to select suitable standard reference materials for future inter-laboratory studies. Further inter-laboratory comparison exercises could promote good measurement practices in the acquisition of stable carbon and nitrogen isotopic composition data.

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Stable Isotope and Fluid Inclusion Studies of the Mugug Au-Ag Mineral Deposits (무극 금은 광상에 대한 유체포유물 및 안정동위원소 분석연구)

  • Kim, Kyu-Han;Kim, Ok-Joon;Chang, Weon-Sun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • A couple of Au-Ag-bearing epithermal quartz veins of Cretaceous(87.9Ma) in age are developed in the Cretaceous(112Ma) granodiorite batholith which was emplaced in Mesozoic Baegyari sedimentary formation. Au minerals consist mostly of electrum with a 54.2-61.9 wt% Au and are closely associated with sulfide minerals including pyrite, chalcopyrite, pyrrhotite, galena and sphalerite. Homogenization temperatures of fluid inclusions in quartz, fluorite and calcite are $196-368^{\circ}C$ (avg. $240^{\circ}C$), $74-176^{\circ}C$ (avg. $115^{\circ}C$) and $75-200^{\circ}C$ (avg. $119^{\circ}C$) respectively. Sulfur isotopic compositions( +5- +8‰) of ore sulfides indicate a deep-seated sulfur origin. Oxygen isotope compositions of different stages of quartz vary from +5.6 to +9.3‰ and calculated ${\delta}^{18}O$ values of ore fluid at $250^{\circ}C$ range from -3.2 to +0.4‰, reflecting an isotopically evolved ore fluid mixed with a $^{18}O$ depleted meteoric water under the variable mixing ratios between hydrothermal and meteoric waters. Isotopic data of calcite minerals support the above conclusions.

  • PDF