Browse > Article
http://dx.doi.org/10.35399/ISK.34.2.4

Winter Food Resource Partitioning between Sympatric Gadus macrocephalus and G. chalcogrammus in the Northern Coast of East Sea, South Korea Inferred from Stomach Contents and Stable Isotopes Analyses  

Park, Joo Myun (Institute of Ocean Science and Technology)
Jung, Hae Kun (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science)
Lee, Chung Il (Department of Marine Ecology and Environment, Gangneung-Wonju National University)
Park, Hyun Je (Department of Marine Ecology and Environment, Gangneung-Wonju National University)
Publication Information
Korean Journal of Ichthyology / v.34, no.2, 2022 , pp. 102-112 More about this Journal
Abstract
This study investigated dietary habits and intra- and inter-specific food resource partitioning of co-occurring walleye pollock (Gadus chalcogrammus) and Pacific cod (G. macrocephalus) from the waters off the north-eastern coast of South Korea using stomach contents and stable isotopes (δ13C and δ15N) analyses. Both species are mesopelagic carnivores that consumed mainly benthopelagic crustaceans, but teleosts were also abundant in the diet of Pacific cod. Non-metric multidimensional scaling (nMDS) ordination and permutational multivariate analysis of variance (PERMANOVA) of dietary data revealed significant intra- and inter-specific dietary differences, i.e., food resource partitioning. Nitrogen stable isotope values (δ15N) were similar between walleye pollock and Pacific cod, but carbon stable isotope values (δ13C) were significant different, suggesting different trophic positioning. Canonical analysis of principal coordinate (CAP) ordination plot further demonstrated that differences in the type and range of prey ingested by the two species contributed such an inter-specific difference in the diet compositions. Ontogenetic changes in diet compositions were evident. As walleye pollock, they preyed more upon carid shrimps and cephalopods, but no such trend was observed in the diets of Pacific cod. While stable isotope values indicated that large-sized specimens of both species were significantly enriched in 15N relative to smaller conspecifics thus supporting these data. Consequently, in this study, both methodologies, i.e., stomach contents and stable isotope analyses, provided evidence of inter- and/or intra-specific dietary segregations and trophic niche partitioning between co-occurring walleye pollock and Pacific cod off eastern Korean waters.
Keywords
Resource partitioning; stomach contents; stable isotope; Gadidae; East Sea;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Albers, W.D. and P.J. Anderson. 1985. Diet of Pacific cod, Gadus macrocephalus, and predation on the northern pink shrimp, Pandalus borealis, in Pavlof Bay, Alaska. Fish. Bull., 83: 601-610.
2 Alcaraz, C. and E. Garcia-Berthou. 2007. Food of an endangered cyprinodont (Aphanius iberus): ontogenetic diet shift and prey electivity. Environ. Biol. Fish., 78: 193-207. https://doi.org/10.1007/s10641-006-0018-0.   DOI
3 Barnes, L.M., M. Leclerc, C.A. Gray and J.E. Williamson. 2011. Dietary niche differentiation of five sympatric species of Platycephalidae. Environ. Biol. Fish., 90: 429-441. https://doi.org/10.1007/S10641-010-9752-4.   DOI
4 Bearhop, S., C.E. Adams, S. Waldron, R.A. Fuller and H. MacLeod. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol., 73: 1007-1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x.   DOI
5 Cha, H.K., S.I. Lee, S.C. Yoon, Y.S. Kim, Y.Y. Chun, D.S. Chang and J.H. Yang. 2007. Maturation and spawning of the Pacific cod, Gadus macrocephalus TILESIUS in East Sea of Korea. J. Korean Soc. Fish. Ocean Technol., 43: 320-328. https://doi.org/10.3796/KSFT.2007.43.4.320.   DOI
6 Cortes, E. 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmo-branch fishes. Can. J. Fish. Aquat. Sci., 54: 726-738. https://doi.org/10.1139/f96-316.   DOI
7 Huveneers, C., N.M. Otway, S.E. Gibbs and R.G. Harcourt. 2007. Quantitative dietassessment of wobbegong sharks (genus orectolobus) in New South Wales, Australia. ICES J. Mar. Sci., 64: 1272-1281. https://doi.org/10.1093/icesjms/fsm111.   DOI
8 Fry, B. 2006. Stable Isotope Ecology. Springer-Verlag, New York, U.S.A., 308pp.
9 Elmqvist, T., C. Folke, M. Nystrom, G. Peterson, J. Bengtsson, B. Walker and J. Norberg. 2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ., 1: 488-494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2.   DOI
10 Greenstreet, S.P. and S.I. Rogers. 2006. Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. ICES J. Mar. Sci., 63: 573-593. https://doi.org/10.1016/j.icesjms.2005.12.009.   DOI
11 Kim, Y.S., K.H. Han, C.B. Kang and J.B. Kim. 2004. Commercial fishes of the coastal and offshore waters in Korea. 2nd ed. Hanguel, Busan, Korea, 333pp.
12 Ko, A.R., S.J. Lee, J.H. Yang and G.W. Baeck. 2020. Diet of the walleye pollock Gadus chalcogrammus in the East Sea, Korea. Korean J. Fish. Aquat. Sci., 53: 456-463. https://doi.org/10.5657/KFAS.2020.0456.   DOI
13 Lee, C.I., M.H. Han, H.K. Jung, H.J. Park and J.M. Park. 2019. Spawning season, and factors influencing allometric growth pattern and body condition of walleye pollock Gadus chalcogrammus in the middle East Sea, Korea. Korean J. Ichthyol., 31: 141-149. https://doi.org/10.35399/ISK.31.3.3.   DOI
14 Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-hak Publ. Co, Seoul, Korea, 615pp.
15 Urban, D. 2012. Food habits of Pacific cod and walleye pollock in the northern Gulf of Alaska. Mar. Ecol. Prog. Ser., 469: 215-222. https://doi.org/10.3354/meps10135.   DOI
16 Yamamura, O., S. Honda, O. Shida and T. Hamatsu. 2002. Diets of walleye pollock Theragra chalcogramma in the Doto area, northern Japan: ontogenetic and seasonal variations. Mar. Ecol. Prog. Ser., 238: 187-198. https://doi.org/10.3354/meps238187.   DOI
17 Yoon, S.C., J.H. Yang, J.H. Park, Y.M. Choi, J.H. Park and D.W. Lee. 2012. Feeding habits of the Pacific cod Gadus macrocephalus in the coastal waters off Jumunjin, Gangwondo of Korea. Korean J. Fish. Aquat. Sci., 45: 379-386. https://doi.org/10.5657/KFAS.2012.0379.   DOI
18 Huh, S.H., J.M. Park and G.W. Baeck. 2016. Diet partitioning between co-occurring Amblychaeturichthys hexanema and Amblychaeturichthys sciistius in the southeastern Korean waters. Korean J. Ichthyol., 28: 79-86.
19 Hyslop, E.J. 1980. Stomach contents analysis - a review of methods and their application. J. Fish Biol., 17: 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x.   DOI
20 Knickle, D.C. and G.A. Rose. 2014. Dietary niche partitioning in sympatric gadid species in coastal Newfoundland: evidence from stomachs and CN isotopes. Environ. Biol. Fish., 97: 343-355. https://doi.org/10.1007/s10641-013-0156-0.   DOI
21 Krajewski, J.P., R.M. Bonaldo, C. Sazima and I. Sazima. 2006. Foraging activity and behaviour of two goatfish species (Perciformes: Mullidae) at Fernando de Noronha Archipelago, tropical West Atlantic. Environ. Biol. Fish., 77: 1-8. https://doi.org/10.1007/s10641-006-9046-z.   DOI
22 Adams, C.F., A.I. Pinchuk and K.O. Coyle. 2007. Seasonal changes in the diet composition and prey selection of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska. Fish. Res., 84: 378-389. https://doi.org/10.1016/j.fishres.2006.11.032.   DOI
23 Anderson, M.J., R.N. Gorley and K.R. Clarke. 2008. PERMANOVA for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth Marine Laboratory, Plymouth, UK, 214pp.
24 Buchheister, A. and R.J. Latour. 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Can. J. Fish. Aquat. Sci., 67: 445-461. https://doi.org/10.1139/F09-196.   DOI
25 Ferry, L.A. and G.M. Cailliet. 1996. Sample size and data analysis: are wecharacterizing and comparing diet properly? In: MacKinlay, D., K. Shearer (eds.), International congress on the biology of fishes. University of California, San Francisco, California, U.S.A., pp. 71-80.
26 White, W.T., M.E. Platell and I.C. Potter. 2004. Comparisons between the diets of four abundant species of elasmobranchs in a sub- tropical embayment: implications for resource partitioning. Mar. Biol., 144: 439-448. https://doi.org/10.1007/s00227-003-1218-1.   DOI
27 Chizinski, C.J., C.G. Huber, M. Longoria and K.L. Pope. 2007. Intra-specific resource partitioning by an opportunistic strategist, inland silverside Menidia beryllina. J. Appl. Ichthyol., 23: 147-151. https://doi.org/10.1111/j.1439-0426.2006.00811.x.   DOI
28 Clarke, K. and R. Gorley. 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, UK, 296pp.
29 Cresson, P., S. Ruitton, M. Ourgaud and M. Harmelin-Vivien. 2014. Contrasting perception of fish trophic level from stomach content and stable isotope analyses: a Mediterranean artificial reef experience. J. Exp. Mar. Biol. Ecol., 452: 54-62. https://doi.org/10.1016/j.jembe.2013.11.014.   DOI
30 Duarte, L.O. and C.B. Garcia. 1999. Diet of the mutton snapper Lutja-nus analis (Cuvier) from the gulf of Salamanca, Colombia, Caribbean Sea. Bull. Mar. Sci., 65: 453-465.
31 Froese, R. and D. Pauly. Eds. 2022. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2022).
32 Fry, B. and E.B. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47.
33 Gerking, S.D. 1994. Feeding ecology of fish, 1st ed. Academic Press, San Diego, U.S.A., 416pp.
34 Hesslein, R.H., M.J. Capel, D.E. Fox and K.A. Hallard. 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Can. J. Fish. Aquat. Sci., 48: 2258-2265. https://doi.org/10.1139/f91-265.   DOI
35 Micheli, F. and B.S. Halpern. 2005. Low functional redundancy in coastal marine assemblages. Ecol. Lett., 8: 391-400. https://doi.org/10.1111/j.1461-0248.2005.00731.x.   DOI
36 Kwak, S.N., G.W. Baeck and D.W. Klumpp. 2005. Comparative feeding ecology of two sympatric greenling species, Hexagrammos otakii and Hexagrammos agrammus in eelgrass Zostera marina beds. Environ. Biol. Fish., 74: 129-140. https://doi.org/10.1007/s10641-005-7429-1.   DOI
37 Langton, R.W. 1982. Diet overlap between Atlantic cod, Gadus morhua, silver hake Merluccius bilinearis and fifteen other northwest Atlantic finfish. Fish. Bull., 80: 745-759.
38 MABIK (Marine Biodiversity Institute of Korea). 2021. 2021 National List of Marine Species, I. Marine Vertebrata. Namu Press, Seocheon, Korea, 138pp.
39 O'Shea, O.R., M. Thums, M. Van Keulen, R.M. Kempster and M.G. Meekan. 2013. Dietary partitioning by five sympatric spe- cies of stingray (Dasyatidae) on coral reefs. J. Fish Biol., 82: 1805-1820. https://doi.org/10.1111/jfb.12104.   DOI
40 Park, J.M. and S.H. Huh. 2018. Ontogenetic and seasonal change in the diets of the glowbelly Acropoma japonicum Gunther 1859 in the south-eastern waters of Korea. Indian J. Fish., 65: 7-14. https://doi.org/10.21077/ijf.2018.65.1.67628-02.   DOI
41 Lin, H.J., W.Y. Kao and Y.T. Wang. 2007. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuar. Coast. Shelf Sci., 73: 527-537. https://doi.org/10.1016/j.ecss.2007.02.013.   DOI
42 Ross, S.T. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia, 1986: 352-388. https://doi.org/10.2307/1444996.   DOI
43 Park, J.M., T.F. Gaston and J.E. Williamson. 2017. Resource partitioning in gurnard species using trophic analyses: the importance of temporal resolution. Fish. Res., 186: 301-310. https://doi.org/10.1016/j.fishres.2016.10.005.   DOI
44 Platell, M.E. and I.C. Potter. 1999. Partitioning of habitat and prey by abundant and similar-sized species of the Triglidae and Pempherididae (Teleostei) in coastal waters. Estuar. Coast. Shelf Sci., 48: 235-252. https://doi.org/10.1006/ecss.1998.0419.   DOI
45 Platell, M.E. and I.C. Potter. 2001. Partitioning of food resources amongst 18 abundant benthic carnivorous fish species in marine waters on the lower west coast of Australia. J. Exp. Mar. Biol. Ecol., 261: 31-54. https://doi.org/10.1016/S0022-0981(01)00257-X.   DOI
46 Smith, J.A., L.J. Baumgartner, I.M. Suthers and M.D. Taylor. 2011. Generalist niche, specialist strategy: the diet of an Australian percichthyid. J. Fish Biol., 78: 1183-1199. https://doi.org/10.1111/j.1095-8649.2011.02926.x.   DOI
47 Qiao, J., J. Hu, Q. Xia, R. Zhu, K. Chen, J. Zhao, Y. Yan, L. Chu and D. He. 2020. Pelagic-benthic resource polymorphism in Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a headwater lake in the Salween River system on the Tibetan Plateau. Ecology and evolution, 10(14): 7431-7444. https://doi.org/10.1002/ece3.6470.   DOI
48 Marshall, A.D., P.M. Kyne and M.B. Bennett. 2008. Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Muller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning. J. Fish Biol., 72: 883-898. https://doi.org/10.1111/j.1095-8649.2007.01762.x.   DOI
49 Park, J.M., H.K. Jung and C.I. Lee. 2021. Factors influencing dietary changes of walleye pollock, Gadus chalcogrammus, inhabiting the East Sea off the Korean coast. J. Mar. Sci. Eng., 9: 1154. https://doi.org/10.3390/jmse9111154.   DOI
50 Pinnegar, J.K. and N.V.C. Polunin. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol., 13: 225-231. https://doi.org/10.1046/j.1365-2435.1999.00301.x.   DOI
51 Stergiou, K.I. and V.S. Karpouzi. 2002. Feeding habits and trophic levels of Mediterranean fish. Rev. Fish Biol. Fish., 11: 217-254. https://doi.org/10.1023/A:1020556722822.   DOI