• Title/Summary/Keyword: Stabilization Control

Search Result 1,253, Processing Time 0.025 seconds

Buzz Margin Control for Supersonic Intake Operating over Wide Range of Mach Number (넓은 마하수 영역에서의 초음속 흡입구 버즈마진 제어기법)

  • Park, Iksoo;Park, Jungwoo;Lee, Changhyuck;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Buzz margin scheduling and control technique which are suitable to regulate stable and high pressure air in wide range of Mach number are suggested for fixed geometry of a supersonic intake. From the analysis of preceding study, most effective control variable is induced and scheduling law is newly suggested in a real application point of view. The appropriateness of the control law in wide range of Mach number is addressed by numerical simulation of controlled propulsion system. Also, the simulation for stabilization and tracking performances of the controller are studied to investigate the phenomena under flight maneuver and disturbances.

Development of an Anaesthesia Ventilator by Volume Control Method and a Gas Monitoring System (가스 모니터 및 볼륨 제어 방식의 마취기용 인공 호흡기 개발)

  • Lee, Jong-Su;Seong, Jong-Hun;Kim, Yeong-Gil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.42-48
    • /
    • 2000
  • Generally an operator would take notice at putting a patient under anesthesia. If the operation is executed in mistake, the patient is exposed to danger. The object of this Paper is that a system is developed for an accuracy of system and a convenience of user interface to prevent an operation of several elements of risk by mistake. The part of electrical system particularly is made for convenience of a manipulation using electrical switch and encoder. A real-time monitoring system is developed for an airway pressure and a gas concentration of carbon dioxide of patient using graphic LCD(liquid crystal display). Moreover, this flow control system could be developed control with accuracy by feedback control method. This is implemented using flow control valve and flow sensor. The implemented system gives convenience and precision of a manipulation of variable value using developed technique. This system shows guaranteed stabilization and confidence of anesthesia ventilator by notifying us that patient's state and information in case of being out of alarm range of variable value.

  • PDF

Design of The Autopilot System of vessel using Fuzzy Algorithm (퍼지제어 알고리즘을 이용한 선박의 자율운항 시스템 설계)

  • 이민수;추연규;이광석;김현덕;박연식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.801-804
    • /
    • 2003
  • The autopilot system of vessel is proposed to take service safety sorority, to elevate service efficiency, to decrease labor and to improve working environment. Ultimate purpose of it is to minimize the number of crew by guaranteeing economical efficiency of shipping service. Recently, the research is being achieving to compensate various nonlinear parameters of vessel and apply it is course keeping control, track keeping control, roll-rudder stabilization, dynamic ship positioning and automatic mooring control etc. using optimizing control technique. Relation between rudder angle controlled by steering machine of vessel and ship-heading angle, and load condition of ship are nonlinear, which affect various parameters of shipping service. The speed and direction of waves, velocity and quantity of wind, which also cause the non-linearity of it. Therefore the autopilot system of ship requires the robust control algorithm can overcome various non-linearity. On this paper, we design the autopilot system of ship, which overcome nonlinear parameters and disturbance of it using Fuzzy Algorithm, evaluate the proposed algorithm and its excellence through simulation

  • PDF

Design of The Autopilot System of vessel using Fuzzy Algorithm (퍼지제어 알고리즘을 이용한 선박의 자율운항 시스템 설계)

  • 이민수;추연규;이광석;김현덕;박연식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1509-1513
    • /
    • 2003
  • The autopilot system of vessel is proposed to take service safety and security, to elevate service efficiency, to decrease labor and to improve working environment. Ultimate purpose of the proposed system is to minimize the number of crew by guaranteeing economical efficiency of shipping service. Recently, the research is being achieved to compensate various nonlinear parameters of vessel and apply it to course keeping control, track keeping control, roll-rudder stabilization, dynamic ship positioning and automatic mooring control etc. using optimizing control technique. Relation between rudder angle controlled by steering machine of vessel and ship-heading angle, and load condition of ship is nonlinear, which affects various parameters of shipping service. The speed and direction of waves, velocity and quantity of wind, which also cause the non-linearity of it. Therefore the autopilot system of ship requires the robust control algorithm can overcome various non-linearity. On this paper, we design the autopilot system of ship, which overcomes nonlinear Parameters and disturbance of it using Fuzzy Algorithm, evaluate the proposed algorithm and its excellence through simulation.

DC-DC integrated LED Driver IC design with power control function (전력 제어 기능을 가진 DC-DC 내장형 LED Driver IC 설계)

  • Lee, Seung-Woo;Lee, Jung-Gi;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.702-708
    • /
    • 2020
  • Recently, as LED display systems have become larger, research on effective power control methods for the systems has been in progress. This paper proposes a power control method to minimize power loss due to the difference in LED characteristics for each channel of a backlight unit (BLU) system. The proposed LED driver IC has a power optimization function and detects the minimum headroom voltage for constant current operation of all channels and linearly controls the DC-DC converter output. Thus, it minimizes power consumption due to unnecessary additional voltage. In addition, it does not require a voltage sensing comparator or a voltage generation circuit for each channel. This has a great advantage in reducing the chip size and for stabilization when implementing an integrated circuit. In order to verify the proposed function, an IC was designed using Cadence and Synopsys' design tools, and it was fabricated with a Magnachip 0.35um 5V/40V CMOS process. The experiments confirmed that the proposed power control method controls the minimum required voltage of the BLU system.

Porcine epidemic diarrhea virus: an update overview of virus epidemiology, vaccines, and control strategies in South Korea

  • Guehwan Jang;Duri Lee;Sangjune Shin;Jeonggyo Lim;Hokeun Won;Youngjoon Eo;Cheol-Ho Kim;Changhee Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.58.1-58.25
    • /
    • 2023
  • Porcine epidemic diarrhea virus (PEDV) has posed significant financial threats to the domestic pig industry over the last three decades in South Korea. PEDV infection will mostly result in endemic persistence in the affected farrow-to-finish (FTF) herds, leading to endemic porcine epidemic diarrhea (PED) followed by year-round recurrent outbreaks. This review aims to encourage collaboration among swine producers, veterinarians, and researchers to offer answers that strengthen our understanding of PEDV in efforts to prevent and control endemic PED and to prepare for the next epidemics or pandemics. We found that collaboratively implementing a PED risk assessment and customized four-pillar-based control measures is vital to interrupt the chain of endemic PED in affected herds: the former can identify on-farm risk factors while the latter aims to compensate for or improve weaknesses via herd immunity stabilization and virus elimination. Under endemic PED, long-term virus survival in slurry and asymptomatically infected gilts ("Trojan Pigs") that can transmit the virus to farrowing houses are key challenges for PEDV eradication in FTF farms and highlight the necessity for active monitoring and surveillance of the virus in herds and their environments. This paper underlines the current knowledge of molecular epidemiology and commercially available vaccines, as well as the risk assessment and customized strategies to control PEDV. The intervention measures for stabilizing herd immunity and eliminating virus circulation may be the cornerstone of establishing regional or national PED eradication programs.

Small Loop Antenna for EMI Controlled and Monitoring

  • Khemchan, A.;Khamphakdi, P.;Urabe, Junichiro;Khan-ngern, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.470-473
    • /
    • 2004
  • This paper presents conducted emission noise measurement from electronic equipment in frequency range of 1 MHz up to 30 MHz by small loop antenna. Small loop antenna measurement method can measure common-mode (CM) and differential-mode (DM) component of the noise on a pair of power line at the same time. The CM and DM can be measured separately. The theory of this measurement method is introduced and analyzed. The measured results were compared with the conventional measurement by Line Impedance Stabilization Network (LISN) and result a good trend between those methods.

  • PDF

Effects of Cycled Lighting on Body Weight, Physiological Variables and Behavioral States in Low Birth Weight Infants (야간 빛 차단이 저출생체중아의 체중, 생리적 변수 및 행동상태에 미치는 효과)

  • Jung, In-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.1
    • /
    • pp.143-153
    • /
    • 2005
  • Purpose: This study was aimed at finding the effects of cycled lighting on body weight, physiological variables and the behavioral state of LBWI (low birth weight infants) in the NICU. Method: The subjects were 20 LBWI at 2 NICUs. They were assigned to an experimental or control group which consisted of 10 subjects in each. Cycled light was applied to the experimental group for 10 days. Result: It was certified that the application of cycled lighting resulted in increased body weight and O2 saturation, and decreased heart rate of the LBWI. However, there was no effect in decrease of respiration and stabilization of the behavioral state. Conclusion: The application of cycled lighting might be a nursing intervention which would in turn have positive effects on the growth of LBWI.

A Switching Controller for Stabilization of Uncertain Linear Systems (불확실한 선형시스템의 안정화를 위한 스위칭제어기)

  • Kim, Jung-Soo;Kim, Byung-Yeun;Lyon, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.382-385
    • /
    • 1991
  • In order to stabilize linear time-invariant systems with the unknown system matrix, a piecewise constant linear state feedback control law including switching logic is developed. A number of feedback gain matrices are first precomputed by solving the Algebraic Riccati Equation with prescribed degree of stability, and then are switched over in a direction to increase degree of stability. Switching stops when a Lyapunov function shows the decreasing property, and hence switching times are finite.

  • PDF

Influence of Tail Blades on the Performance of a Fin (핀의 성능에 미치는 꼬리날개의 영향)

  • Seo, Dae-Won;Jeong, Seong-Wook;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.55-63
    • /
    • 2007
  • Fins are widely used for roll stabilization of car ferries and passenger ships as well as high performance naval ships. In the present study, model experiments and numerical simulations are performed to investigate the influence of tail blades on the performance of a fin stabilizer for various angles of attack. It is found that a considerable improvement in performance of the fin stabilizer is achieved with adoption of the tail blades. The results can be utilized for the design of a high-lift control surfaces including fin stabilizers.