DOI QR코드

DOI QR Code

Porcine epidemic diarrhea virus: an update overview of virus epidemiology, vaccines, and control strategies in South Korea

  • Guehwan Jang (College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University) ;
  • Duri Lee (College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University) ;
  • Sangjune Shin (College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University) ;
  • Jeonggyo Lim (ChoongAng Vaccine Laboratories) ;
  • Hokeun Won (ChoongAng Vaccine Laboratories) ;
  • Youngjoon Eo (College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University) ;
  • Cheol-Ho Kim (Gyeongnam Veterinary Service Laboratory Quarantine Agency) ;
  • Changhee Lee (College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University)
  • Received : 2023.03.31
  • Accepted : 2023.06.04
  • Published : 2023.07.31

Abstract

Porcine epidemic diarrhea virus (PEDV) has posed significant financial threats to the domestic pig industry over the last three decades in South Korea. PEDV infection will mostly result in endemic persistence in the affected farrow-to-finish (FTF) herds, leading to endemic porcine epidemic diarrhea (PED) followed by year-round recurrent outbreaks. This review aims to encourage collaboration among swine producers, veterinarians, and researchers to offer answers that strengthen our understanding of PEDV in efforts to prevent and control endemic PED and to prepare for the next epidemics or pandemics. We found that collaboratively implementing a PED risk assessment and customized four-pillar-based control measures is vital to interrupt the chain of endemic PED in affected herds: the former can identify on-farm risk factors while the latter aims to compensate for or improve weaknesses via herd immunity stabilization and virus elimination. Under endemic PED, long-term virus survival in slurry and asymptomatically infected gilts ("Trojan Pigs") that can transmit the virus to farrowing houses are key challenges for PEDV eradication in FTF farms and highlight the necessity for active monitoring and surveillance of the virus in herds and their environments. This paper underlines the current knowledge of molecular epidemiology and commercially available vaccines, as well as the risk assessment and customized strategies to control PEDV. The intervention measures for stabilizing herd immunity and eliminating virus circulation may be the cornerstone of establishing regional or national PED eradication programs.

Keywords

Acknowledgement

We greatly thank swine veterinarians for providing clinical samples and information on individual farms.

References

  1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192. https://doi.org/10.1038/s41579-018-0118-9
  2. Liu Q, Xu K, Wang X, Wang W. From SARS to COVID-19: what lessons have we learned? J Infect Public Health. 2020;13(11):1611-1618. https://doi.org/10.1016/j.jiph.2020.08.001
  3. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502. https://doi.org/10.1016/j.tim.2016.03.003
  4. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008. https://doi.org/10.1128/JVI.06540-11
  5. Lee C. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J. 2015;12(1):193.
  6. Lee C. Porcine epidemic diarrhoea virus. In: Zakaryan H, editor. Porcine Viruses: From Pathogenesis to Strategies for Control. Norfolk: Caister Academic Press; 2019, 107-134.
  7. Takahashi K, Okada K, Ohshima K. An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. Nippon Juigaku Zasshi. 1983;45(6):829-832. https://doi.org/10.1292/jvms1939.45.829
  8. Kweon CH, Kwon BJ, Jung TS, Kee YJ, Hur DH, Hwang EK, et al. Isolation of porcine epidemic diarrhea virus (PEDV) in Korea. Korean J Vet Res. 1993;33(2):249-254.
  9. Chen JF, Sun DB, Wang CB, Shi HY, Cui XC, Liu SW, et al. Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China. Virus Genes. 2008;36(2):355-364. https://doi.org/10.1007/s11262-007-0196-7
  10. Puranaveja S, Poolperm P, Lertwatcharasarakul P, Kesdaengsakonwut S, Boonsoongnern A, Urairong K, et al. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerg Infect Dis. 2009;15(7):1112-1115. https://doi.org/10.3201/eid1507.081256
  11. Li W, Li H, Liu Y, Pan Y, Deng F, Song Y, et al. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis. 2012;18(8):1350-1353. https://doi.org/10.3201/eid1803.120002
  12. Lee S, Kim Y, Lee C. Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112. Virus Res. 2015;208:215-224. https://doi.org/10.1016/j.virusres.2015.07.010
  13. Lee S, Lee DU, Noh YH, Lee SC, Choi HW, Yang HS, et al. Molecular characteristics and pathogenic assessment of porcine epidemic diarrhoea virus isolates from the 2018 endemic outbreaks on Jeju Island, South Korea. Transbound Emerg Dis. 2019;66(5):1894-1909. https://doi.org/10.1111/tbed.13219
  14. Mole B. Deadly pig virus slips through US borders. Nature. 2013;499(7459):388.
  15. Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, Madson D, et al. Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest. 2013;25(5):649-654. https://doi.org/10.1177/1040638713501675
  16. Vlasova AN, Marthaler D, Wang Q, Culhane MR, Rossow KD, Rovira A, et al. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg Infect Dis. 2014;20(10):1620-1628. https://doi.org/10.3201/eid2010.140491
  17. Ojkic D, Hazlett M, Fairles J, Marom A, Slavic D, Maxie G, et al. The first case of porcine epidemic diarrhea in Canada. Can Vet J. 2015;56(2):149-152.
  18. Langel SN, Paim FC, Lager KM, Vlasova AN, Saif LJ. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res. 2016;226:93-107. https://doi.org/10.1016/j.virusres.2016.05.016
  19. EFSA Panel on Animal Health and Welfare (AHAW). Scientific Opinion on porcine epidemic diarrhoea and emerging porcine deltacoronavirus. EFSA J. 2014;12(10):3877.
  20. Pasick J, Berhane Y, Ojkic D, Maxie G, Embury-Hyatt C, Swekla K, et al. Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transbound Emerg Dis. 2014;61(5):397-410. https://doi.org/10.1111/tbed.12269
  21. Trujillo-Ortega ME, Beltran-Figueroa R, Garcia-Hernandez ME, Juarez-Ramirez M, Sotomayor-Gonzalez A, Hernandez-Villegas EN, et al. Isolation and characterization of porcine epidemic diarrhea virus associated with the 2014 disease outbreak in Mexico: case report. BMC Vet Res. 2016;12(1):132.
  22. Jarvis MC, Lam HC, Rovira A, Marthaler DG. Complete genome sequence of porcine epidemic diarrhea virus strain COL/Cundinamarca/2014 from Colombia. Genome Announc. 2016;4(2):e00239-e16.
  23. Lee S, Lee C. Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg Infect Dis. 2014;20(7):1223-1226. https://doi.org/10.3201/eid2007.140294
  24. Lin CN, Chung WB, Chang SW, Wen CC, Liu H, Chien CH, et al. US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013-2014. J Vet Med Sci. 2014;76(9):1297-1299. https://doi.org/10.1292/jvms.14-0098
  25. Suzuki T, Murakami S, Takahashi O, Kodera A, Masuda T, Itoh S, et al. Molecular characterization of pig epidemic diarrhoea viruses isolated in Japan from 2013 to 2014. Infect Genet Evol. 2015;36:363-368. https://doi.org/10.1016/j.meegid.2015.10.017
  26. Dastjerdi A, Carr J, Ellis RJ, Steinbach F, Williamson S. Porcine epidemic diarrhea virus among farmed pigs, Ukraine. Emerg Infect Dis. 2015;21(12):2235-2237. https://doi.org/10.3201/eid2112.150272
  27. Lee S, Ko DH, Kwak SK, Lim CH, Moon SU, Lee DS, et al. Reemergence of porcine epidemic diarrhea virus on Jeju Island. Daehan Suyi Haghoeji. 2014;54(3):185-188. https://doi.org/10.14405/kjvr.2014.54.3.185
  28. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020;2020:baaa062.
  29. Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58(3):243-247. https://doi.org/10.1007/BF01317606
  30. Kocherhans R, Bridgen A, Ackermann M, Tobler K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes. 2001;23(2):137-144. https://doi.org/10.1023/A:1011831902219
  31. Duarte M, Tobler K, Bridgen A, Rasschaert D, Ackermann M, Laude H. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology. 1994;198(2):466-476. https://doi.org/10.1006/viro.1994.1058
  32. Lai MM, Perlman S, Anderson LJ. Coronaviridae. In: Knipe DM, Howley PM, Griffin DE, Martin MA., Lamb RA, Roizman B, Straus SE, editors. Fields Virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007, 1306-1336.
  33. Li W, van Kuppeveld FJ, He Q, Rottier PJ, Bosch BJ. Cellular entry of the porcine epidemic diarrhea virus. Virus Res. 2016;226:117-127. https://doi.org/10.1016/j.virusres.2016.05.031
  34. Hou Y, Lin CM, Yokoyama M, Yount BL, Marthaler D, Douglas AL, et al. Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets. J Virol. 2017;91(14):e00227-e17.
  35. Suzuki T, Terada Y, Enjuanes L, Ohashi S, Kamitani W. S1 subunit of spike protein from a current highly virulent porcine epidemic diarrhea virus is an important determinant of virulence in piglets. Viruses. 2018;10(9):467.
  36. Kao CF, Chang HW. Investigation of the role of the spike protein in reversing the virulence of the highly virulent Taiwan porcine epidemic diarrhea virus Pintung 52 strains and its attenuated counterpart. Viruses. 2019;12(1):41.
  37. Tsai KJ, Deng MC, Wang FI, Tsai SH, Chang C, Chang CY, et al. Deletion in the S1 region of porcine epidemic diarrhea virus reduces the virulence and influences the virus-neutralizing activity of the antibody induced. Viruses. 2020;12(12):1378.
  38. Chen P, Zhao X, Zhou S, Zhou T, Tan X, Wu X, et al. A virulent PEDV strain FJzz1 with genomic mutations and deletions at the high passage level was attenuated in piglets via serial passage in vitro. Virol Sin. 2021;36(5):1052-1065. https://doi.org/10.1007/s12250-021-00368-w
  39. Tran TX, Lien NT, Thu HT, Duy ND, Duong BT, Quyen DV. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? PeerJ. 2021;9:e12329.
  40. Li Z, Ma Z, Dong L, Yang T, Li Y, Jiao D, et al. Molecular mechanism of porcine epidemic diarrhea virus cell tropism. MBio. 2022;13(2):e0373921.
  41. Park J, Lee C. Emergence and evolution of novel G2b-like porcine epidemic diarrhea virus inter-subgroup G1b recombinants. Arch Virol. 2020;165(11):2471-2478. https://doi.org/10.1007/s00705-020-04767-4
  42. Lee DK, Park CK, Kim SH, Lee C. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res. 2010;149(2):175-182. https://doi.org/10.1016/j.virusres.2010.01.015
  43. Chen Q, Li G, Stasko J, Thomas JT, Stensland WR, Pillatzki AE, et al. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J Clin Microbiol. 2014;52(1):234-243.  https://doi.org/10.1128/JCM.02820-13
  44. Lee S, Lee C. Complete genome sequence of a novel S-insertion variant of porcine epidemic diarrhea virus from South Korea. Arch Virol. 2017;162(9):2919-2922. https://doi.org/10.1007/s00705-017-3441-y
  45. Lee S, Lee C. Genomic and antigenic characterization of porcine epidemic diarrhoea virus strains isolated from South Korea, 2017. Transbound Emerg Dis. 2018;65(4):949-956. https://doi.org/10.1111/tbed.12904
  46. Lee S, Park GS, Shin JH, Lee C. Full-genome sequence analysis of a variant strain of porcine epidemic diarrhea virus in South Korea. Genome Announc. 2014;2(6):e01116.
  47. Jang G, Park J, Lee C. Complete genome sequences of novel S-deletion variants of porcine epidemic diarrhea virus identified from a recurrent outbreak on Jeju Island, South Korea. Arch Virol. 2019;164(10):2621-2625. https://doi.org/10.1007/s00705-019-04360-4
  48. Grasland B, Bigault L, Bernard C, Quenault H, Toulouse O, Fablet C, et al. Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in France in December 2014. Genome Announc. 2015;3(3):e00535.
  49. Hanke D, Jenckel M, Petrov A, Ritzmann M, Stadler J, Akimkin V, et al. Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014. Emerg Infect Dis. 2015;21(3):493-496. https://doi.org/10.3201/eid2103.141165
  50. Theuns S, Conceicao-Neto N, Christiaens I, Zeller M, Desmarets LM, Roukaerts ID, et al. Complete genome sequence of a porcine epidemic diarrhea virus from a novel outbreak in Belgium, January 2015. Genome Announc. 2015;3(3):e00506.
  51. Wang L, Byrum B, Zhang Y. New variant of porcine epidemic diarrhea virus, United States, 2014. Emerg Infect Dis. 2014;20(5):917-919. https://doi.org/10.3201/eid2005.140195
  52. Li BX, Ge JW, Li YJ. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology. 2007;365(1):166-172. https://doi.org/10.1016/j.virol.2007.03.031
  53. Meng F, Suo S, Zarlenga DS, Cong Y, Ma X, Zhao Q, et al. A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry. Virology. 2014;456-457:20-27. https://doi.org/10.1016/j.virol.2014.01.010
  54. Nam E, Lee C. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet Microbiol. 2010;144(1-2):41-50. https://doi.org/10.1016/j.vetmic.2009.12.024
  55. Park JE, Park ES, Yu JE, Rho J, Paudel S, Hyun BH, et al. Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus. Virus Res. 2015;197:108-115. https://doi.org/10.1016/j.virusres.2014.12.024
  56. Shan Z, Yin J, Wang Z, Chen P, Li Y, Tang L. Identification of the functional domain of the porcine epidemic diarrhoea virus receptor. J Gen Virol. 2015;96(9):2656-2660. https://doi.org/10.1099/vir.0.000211
  57. Ji CM, Wang B, Zhou J, Huang YW. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells. Virology. 2018;517:16-23. https://doi.org/10.1016/j.virol.2018.02.019
  58. Shirato K, Maejima M, Islam MT, Miyazaki A, Kawase M, Matsuyama S, et al. Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. J Gen Virol. 2016;97(10):2528-2539. https://doi.org/10.1099/jgv.0.000563
  59. Whitworth KM, Rowland RR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res. 2019;28(1):21-32. https://doi.org/10.1007/s11248-018-0100-3
  60. Huan CC, Wang Y, Ni B, Wang R, Huang L, Ren XF, et al. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Arch Virol. 2015;160(7):1621-1628. https://doi.org/10.1007/s00705-015-2408-0
  61. Wei X, She G, Wu T, Xue C, Cao Y. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Vet Res. 2020;51(1):10. 
  62. Sola I, Almazan F, Zuniga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol. 2015;2(1):265-288. https://doi.org/10.1146/annurev-virology-100114-055218
  63. Thomas JT, Chen Q, Gauger PC, Gimenez-Lirola LG, Sinha A, Harmon KM, et al. Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs. PLoS One. 2015;10(10):e0139266.
  64. Lowe J, Gauger P, Harmon K, Zhang J, Connor J, Yeske P, et al. Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerg Infect Dis. 2014;20(5):872-874. https://doi.org/10.3201/eid2005.131628
  65. Dee S, Clement T, Schelkopf A, Nerem J, Knudsen D, Christopher-Hennings J, et al. An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept. BMC Vet Res. 2014;10(1):176.
  66. Opriessnig T, Xiao CT, Gerber PF, Zhang J, Halbur PG. Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naive pigs. PLoS One. 2014;9(8):e104766.
  67. Li R, Tian X, Qiao S, Guo J, Xie W, Zhang G. Complete genome sequence of the porcine epidemic diarrhea virus variant CH/HNYF/2014. Genome Announc. 2015;3(6):e01486-e15.
  68. Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis. 2012;18(1):161-163. https://doi.org/10.3201/eid1801.111259
  69. Gallien S, Moro A, Lediguerher G, Catinot V, Paboeuf F, Bigault L, et al. Evidence of porcine epidemic diarrhea virus (PEDV) shedding in semen from infected specific pathogen-free boars. Vet Res. 2018;49(1):7.
  70. Gallien S, Moro A, Lediguerher G, Catinot V, Paboeuf F, Bigault L, et al. Limited shedding of an S-InDel strain of porcine epidemic diarrhea virus (PEDV) in semen and questions regarding the infectivity of the detected virus. Vet Microbiol. 2019;228:20-25. https://doi.org/10.1016/j.vetmic.2018.09.025
  71. Alonso C, Goede DP, Morrison RB, Davies PR, Rovira A, Marthaler DG, et al. Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet Res. 2014;45(1):73.
  72. Park CK, Lee C. Clinical examination and control measures in a commercial pig farm persistently infected with porcine epidemic diarrhea virus. J Vet Clin. 2009;26(5):463-466.
  73. Park CK, Lee KK, Lee C. PED past, present, and future. In: Proceedings of the 5th Asian Pig Veterinary Society Congress, Pattaya, Thailand. Pattaya: Asian Pig Veterinary Society; 2011, S19-S20.
  74. Jang G, Park J, Lee C. Successful eradication of porcine epidemic diarrhea in an enzootically infected farm: a two-year follow-up study. Pathogens. 2021;10(7):830.
  75. Jang G, Lee S, Lee C. Assessing the risk of recurrence of porcine epidemic diarrhea virus in affected farms on Jeju Island, South Korea. J Vet Sci. 2021;22(4):e48.
  76. Park NY, Lee SY. Retrospective study of porcine epidemic diarrhea virus (PEDV) in Korea by in situ hybridization. Korean J Vet Res. 1997;37(4):809-816.
  77. Park CK, Pak SI. Infection patterns of porcine epidemic diarrhea virus (PEDV) by sera-epidemiological analysis in Korean pig farms. J Life Sci. 2009;19(9):1304-1308. https://doi.org/10.5352/JLS.2009.19.9.1304
  78. Kim SH, Lee JM, Jung J, Kim IJ, Hyun BH, Kim HI, et al. Genetic characterization of porcine epidemic diarrhea virus in Korea from 1998 to 2013. Arch Virol. 2015;160(4):1055-1064. https://doi.org/10.1007/s00705-015-2353-y
  79. Park S, Kim S, Song D, Park B. Novel porcine epidemic diarrhea virus variant with large genomic deletion, South Korea. Emerg Infect Dis. 2014;20(12):2089-2092. https://doi.org/10.3201/eid2012.131642
  80. Diep NV, Norimine J, Sueyoshi M, Lan NT, Yamaguchi R. Novel porcine epidemic diarrhea virus (PEDV) variants with large deletions in the spike (S) gene coexist with PEDV strains possessing an intact S gene in domestic pigs in Japan: a new disease situation. PLoS One. 2017;12(1):e0170126.
  81. Masuda T, Murakami S, Takahashi O, Miyazaki A, Ohashi S, Yamasato H, et al. New porcine epidemic diarrhoea virus variant with a large deletion in the spike gene identified in domestic pigs. Arch Virol. 2015;160(10):2565-2568. https://doi.org/10.1007/s00705-015-2522-z
  82. Oka T, Saif LJ, Marthaler D, Esseili MA, Meulia T, Lin CM, et al. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Vet Microbiol. 2014;173(3-4):258-269. https://doi.org/10.1016/j.vetmic.2014.08.012
  83. Su Y, Hou Y, Prarat M, Zhang Y, Wang Q. New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017. Arch Virol. 2018;163(9):2485-2489. https://doi.org/10.1007/s00705-018-3874-y
  84. Zhang J, Yim-Im W, Chen Q, Zheng Y, Schumacher L, Huang H, et al. Identification of porcine epidemic diarrhea virus variant with a large spike gene deletion from a clinical swine sample in the United States. Virus Genes. 2018;54(2):323-327. https://doi.org/10.1007/s11262-018-1542-7
  85. Boniotti MB, Papetti A, Lavazza A, Alborali G, Sozzi E, Chiapponi C, et al. Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy. Emerg Infect Dis. 2016;22(1):83-87. https://doi.org/10.3201/eid2201.150544
  86. Mesquita JR, Hakze-van der Honing R, Almeida A, Lourenco M, van der Poel WH, Nascimento MS. Outbreak of porcine epidemic diarrhea virus in Portugal, 2015. Transbound Emerg Dis. 2015;62(6):586-588. https://doi.org/10.1111/tbed.12409
  87. Steinrigl A, Fernandez SR, Stoiber F, Pikalo J, Sattler T, Schmoll F. First detection, clinical presentation and phylogenetic characterization of Porcine epidemic diarrhea virus in Austria. BMC Vet Res. 2015;11(1):310.
  88. Salmon H, Berri M, Gerdts V, Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol. 2009;33(3):384-393. https://doi.org/10.1016/j.dci.2008.07.007
  89. Rooke JA, Bland IM. The acquisition of passive immunity in the new-born piglet. Livest Prod Sci. 2002;78(1):13-23. https://doi.org/10.1016/S0301-6226(02)00182-3
  90. Klobasa F, Werhahn E, Butler JE. Composition of sow milk during lactation. J Anim Sci. 1987;64(5):1458-1466. https://doi.org/10.2527/jas1987.6451458x
  91. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1(1):11-22. https://doi.org/10.1038/mi.2007.6
  92. Mantis NJ, Rol N, Corthesy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4(6):603-611. https://doi.org/10.1038/mi.2011.41
  93. Bohl EH, Gupta RK, Olquin MV, Saif LJ. Antibody responses in serum, colostrum, and milk of swine after infection or vaccination with transmissible gastroenteritis virus. Infect Immun. 1972;6(3):289-301. https://doi.org/10.1128/iai.6.3.289-301.1972
  94. Bohl EH, Saif LJ. Passive immunity in transmissible gastroenteritis of swine: immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes. Infect Immun. 1975;11(1):23-32. https://doi.org/10.1128/iai.11.1.23-32.1975
  95. Saif LJ, Bohl EH, Gupta RK. Isolation of porcine immunoglobulins and determination of the immunoglobulin classes of transmissible gastroenteritis viral antibodies. Infect Immun. 1972;6(4):600-609. https://doi.org/10.1128/iai.6.4.600-609.1972
  96. Saif LJ, Bohl EH. Passive immunity to transmissible gastroenteritis virus: intramammary viral inoculation of sows. Ann N Y Acad Sci. 1983;409:708-723. https://doi.org/10.1111/j.1749-6632.1983.tb26910.x
  97. Saif LJ. Enteric viral infections of pigs and strategies for induction of mucosal immunity. Adv Vet Med. 1999;41:429-446. https://doi.org/10.1016/S0065-3519(99)80033-0
  98. Baek PS, Choi HW, Lee S, Yoon IJ, Lee YJ, Lee S, et al. Efficacy of an inactivated genotype 2b porcine epidemic diarrhea virus vaccine in neonatal piglets. Vet Immunol Immunopathol. 2016;174:45-49. https://doi.org/10.1016/j.vetimm.2016.04.009
  99. Crawford K, Lager KM, Kulshreshtha V, Miller LC, Faaberg KS. Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada. Virus Res. 2016;226:108-116.  https://doi.org/10.1016/j.virusres.2016.08.005
  100. Animal and Plant Quarantine Agency [Internet]. Gimcheon: QIA; http://www.qia.go.kr/viewwebQiaCom.do?id=36111&type=6_18_1bdsm. Updated 2014. Accessed 2014 Jul 11.
  101. Song DS, Oh JS, Kang BK, Yang JS, Moon HJ, Yoo HS, et al. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res Vet Sci. 2007;82(1):134-140. https://doi.org/10.1016/j.rvsc.2006.03.007
  102. Kweon CH, Kwon BJ, Lee JG, Kwon GO, Kang YB. Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate. Vaccine. 1999;17(20-21):2546-2553. https://doi.org/10.1016/S0264-410X(99)00059-6
  103. Sato T, Takeyama N, Katsumata A, Tuchiya K, Kodama T, Kusanagi K. Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes. 2011;43(1):72-78. https://doi.org/10.1007/s11262-011-0617-5
  104. Oh J, Lee KW, Choi HW, Lee C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol. 2014;159(11):2977-2987. https://doi.org/10.1007/s00705-014-2163-7
  105. Jung K, Ha Y, Ha SK, Kim J, Choi C, Park HK, et al. Identification of porcine circovirus type 2 in retrospective cases of pigs naturally infected with porcine epidemic diarrhoea virus. Vet J. 2006;171(1):166-168. https://doi.org/10.1016/j.tvjl.2004.09.002
  106. Liu J, Xu Y, Lin Z, Fan J, Dai A, Deng X, et al. Epidemiology investigation of PRRSV discharged by faecal and genetic variation of ORF5. Transbound Emerg Dis. 2021;68(4):2334-2344. https://doi.org/10.1111/tbed.13894
  107. Chattha KS, Roth JA, Saif LJ. Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci. 2015;3(1):375-395. https://doi.org/10.1146/annurev-animal-022114-111038
  108. Jang G, Won H, Lee DU, Noh YH, Lee SC, Choi HW, et al. Assessment of the safety and efficacy of an attenuated live vaccine based on highly virulent genotype 2b porcine epidemic diarrhea virus in nursing piglets. Vet Microbiol. 2019;231:120-128. https://doi.org/10.1016/j.vetmic.2019.03.009
  109. Jang G, Lee D, Lee C. Development of a next-generation vaccine platform for porcine epidemic diarrhea virus using a reverse genetics system. Viruses. 2022;14(11):2319.
  110. Jang G, Min KC, Lee IH, Won H, Yoon IJ, Kang SC, et al. Deletion of pentad residues in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets. Vet Microbiol. 2023;280:109727.
  111. Tun HM, Cai Z, Khafipour E. Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDv) in the infected on-farm earthen manure storages (EMS). Front Microbiol. 2016;7:265.
  112. Gerber PF, Xiao CT, Lager K, Crawford K, Kulshreshtha V, Cao D, et al. Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge. Vet Res. 2016;47(1):118.
  113. Gallien S, Andraud M, Moro A, Lediguerher G, Morin N, Gauger PC, et al. Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus. Transbound Emerg Dis. 2018;65(6):1720-1732. https://doi.org/10.1111/tbed.12945
  114. Madson DM, Magstadt DR, Arruda PH, Hoang H, Sun D, Bower LP, et al. Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Vet Microbiol. 2014;174(1-2):60-68. https://doi.org/10.1016/j.vetmic.2014.09.002
  115. Niederwerder MC, Nietfeld JC, Bai J, Peddireddi L, Breazeale B, Anderson J, et al. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs. J Vet Diagn Invest. 2016;28(6):671-678. https://doi.org/10.1177/1040638716663251
  116. Lohse L, Krog JS, Strandbygaard B, Rasmussen TB, Kjaer J, Belsham GJ, et al. Experimental infection of young pigs with an early European strain of porcine epidemic diarrhoea virus and a recent US strain. Transbound Emerg Dis. 2017;64(5):1380-1386. https://doi.org/10.1111/tbed.12509
  117. Langel SN, Paim FC, Alhamo MA, Buckley A, Van Geelen A, Lager KM, et al. Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets. Front Immunol. 2019;10:727.