• Title/Summary/Keyword: Stability Analysis Method

Search Result 3,794, Processing Time 0.028 seconds

A Study on the Seismic Stability of an Existing Switchboard for Emergency Diesel Generator (비상 디젤발전기용 배전반의 내진안전성에 관한 연구)

  • Neung_Gyo Ha;Chae-Sil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1341-1347
    • /
    • 2023
  • This study proposes to ensure the seismic stability of an existing switchboard for emergency diesel generator by applying mode analysis, static analysis and dynamic analysis. First, a three dimensional model for the swithboard was made with simplification for mode analysis. Next, The mode analysis for the finite element model of the existing switchboard was performed. The 1st natural frequency below 33 Hz, the seismic safety cutoff frequency, was calculated to be 21.943 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis and response spectrum analysis under the normal and faulted conditions were 74.179 MPa and 49.769 MPa, respectively. These are less than specified allowable stresses. So seismic stability was confirmed.

Stability Analysis of Turbocharger Rotor-Bearing System (과급기 축계의 안정성 해석)

  • Suk, Ho-Il;Song, Jin-Dea;Kim, Yong-Han;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1038-1043
    • /
    • 2002
  • The floating ring journal bearing is attraction for high-speed turbo machinery applications, including turbochargers and aircraft accessory equipment, because it is not only simple and easy to make and to replace in the field but also it seems to have adequate high speed stability characteristics. Therefore, an analysis method of dynamic properties of floating ring journal bearing is presented. The static equilibrium locus of inner film and outer film are calculated by using the impedance description. The equivalent stiffness and damping coefficients of floating ring journal bearing are composed by using the equilibrium of torque between inner film and outer film. Then, a stability analysis of turbocharger shaft system supported with floating ring journal bearing has been performed.

  • PDF

Robust stability analysis of uncertain linear systems with input saturation using piecewise Lyapunov functions (불연속 리아푸노프 함수를 이용한 입력제한이 있는 불확실 선형 시스템의 안정성 해석)

  • Lee, Sang-Moon;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.131-134
    • /
    • 2003
  • In this paper, we consider the problem of finding the stability region in state space for uncertain linear systems with input saturation. For stability analysis, two Lyapunov functions are chosen. One is for the lineal region and the other is for the saturated legion. Piecewise Lyapunov functions are obtained by solving successive linear matrix inequalites(LMIs) relaxations. A sufficient condition for robust stability is derived in the form of stability region of initial conditions. A numerical example shows the effectiveness of the proposed method.

  • PDF

A Study of the Existing Slope Stability in a Big City (대도시 기존 사면의 안정화 연구)

  • 이수곤;양홍석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.265-272
    • /
    • 2001
  • Excavation in a big city is different from excavation in a local area because construction methods and stability are directly connected in a loss of life. Especially, estimate of rock mass slope stability is excuted by more detail and safty work. In this study, we are made reserches in rock mass slope stability and safety method that the slope is closed by elementary school in a big city. The result of many field study and numerical analysis is shown up direct reinforcement used to anchor.

  • PDF

Study on Characteristics of Numerical Analysis Method for Stability Analysis of Reinforced Slope (보강사면의 안정해석을 위한 수치해석방법의 특성에 관한 연구)

  • Kim, Joon-Seok;Kim, Ju-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.17-23
    • /
    • 2009
  • Conventional methods of reinforced slope analysis based on the concept of limit equilibrium have been widely adopted mainly due to their simplicity and short computation time. But depending upon the assumptions on the inter-slice forces, the factor of safety resulting from the limit equilibrium method is not uniquely determined. This paper describes a method to calculate the factor of safely of a slope using a numerical analysis. Recently some useful analysis techniques (Strength reduction method and the stability method using stress fields) by numerical analysis are proposed and their theory and characteristics applications are studied and investigated with simple examples in this paper.

  • PDF

A Probabilistic Approach to Small Signal Stability Analysis of Power Systems with Correlated Wind Sources

  • Yue, Hao;Li, Gengyin;Zhou, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1605-1614
    • /
    • 2013
  • This paper presents a probabilistic methodology for small signal stability analysis of power system with correlated wind sources. The approach considers not only the stochastic characteristics of wind speeds which are treated as random variables with Weibull distributions, while also the wind speed spatial correlations which are characterized by a correlation matrix. The approach based on the 2m+1 point estimate method and Cornish Fisher expansion, the orthogonal transformation technique is used to deal with the correlation of wind farms. A case study is carried out on IEEE New England system and the probabilistic indexes for eigenvalue analysis are computed from the statistical processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed by comparing with the results of Monte Carlo simulation. The numerical results indicate that the proposed method can actually capture the probabilistic characteristics of mode properties of the power systems with correlated wind sources and the consideration of spatial correlation has influence on the probability of system small signal stability.

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

Transient Stability Analysis of Power System by Transient Energy Method (과도에너지법에 의한 전력계통의 과도안정도 해석에 관한 연구)

  • 김준현;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.2
    • /
    • pp.59-64
    • /
    • 1983
  • This paper deals with the transient energy method of transient stability analysis of multi-machine power system by improving the transfer conductance, the kinetic energy and the critical transient energy. The tranfer conductance is considered more correctly, the generators of system are seperated to two states (critical and the rest state)and the correction term of critical transient energy (to reference point) is added. This analysis is performed by digital computer simulation and the application of this method to two model systems has shown its superiority to other available methods.

  • PDF

Stability and minimum bracing for stepped columns with semirigid connections: Classical elastic approach

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.415-431
    • /
    • 1997
  • Stability equations that evaluate the elastic critical axial load of stepped columns under extreme and intermediate concentrated axial loads in any type of construction with sidesway totally inhibited, partially inhibited and uninhibited are derived in a classical manner. These equations can be utilized in the stability analysis of framed structures (totally braced, partially braced, and unbraced) with stepped columns with rigid, semirigid, and simple connetions. The proposed column classification and the corresponding stability equations overcome the limitations of current methods which are based on a classification of braced and unbraced columns. The proposed stability equations include the effects of: 1) semirigid connections; 2) step variation in the column cross section at the point of application of the intermediate axial load; and 3) lateral and rotational restraints at the intermediate connection and at the column ends. The proposed method consists in determining the eigenvalue of a $2{\times}2$ matrix for a braced column at the two ends and of a $3{\times}3$ matrix for a partially braced or unbraced column. The stability analysis can be carried out directly with the help of a pocket calculator. The proposed method is general and can be extended to multi-stepped columns. Various examples are include to demonstrate the effectiveness of the proposed method and to verify that the calculated results are exact. Definite minimum bracing criteria for single stepped columns is also presented.

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF