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Abstract – This paper presents a probabilistic methodology for small signal stability analysis of 

power system with correlated wind sources. The approach considers not only the stochastic 

characteristics of wind speeds which are treated as random variables with Weibull distributions, while 

also the wind speed spatial correlations which are characterized by a correlation matrix. The approach 

based on the 2m+1 point estimate method and Cornish Fisher expansion, the orthogonal transformation 

technique is used to deal with the correlation of wind farms. A case study is carried out on IEEE New 

England system and the probabilistic indexes for eigenvalue analysis are computed from the statistical 

processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed 

by comparing with the results of Monte Carlo simulation. The numerical results indicate that the 

proposed method can actually capture the probabilistic characteristics of mode properties of the power 

systems with correlated wind sources and the consideration of spatial correlation has influence on the 

probability of system small signal stability.  
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1. Introduction 

 

With the increase in penetration of wind power which is 

essentially intermittent and random, the dynamic 

performance of the power system will be affected [1]. It is 

necessary and imperative for the power system engineers 

to understand in essential how the wind power penetration 

affects an existing interconnected large-scale power system, 

especially for the power system small signal stability [2-4]. 

Deterministic strategies used for small signal stability 

analysis of power systems as affected by penetration of 

large scale wind generation are limited since they are 

carried out based on a specified operating condition (e.g. 

mean wind generation scenario). However, since the wind 

generation is primarily determined by wind speed and thus 

fluctuating constantly, the operating conditions of the 

system are stochastically uncertain. The results obtained by 

deterministic strategies are too conservative, in other words, 

though the system is stable deterministically, there exists 

the certain probability that the system can lose stability due 

to the stochastic fluctuations caused by wind generation [5]. 

The behavior of these probabilistic characteristics of the 

power system can be described only in statistical terms. 

Moreover, wind sources are spatially correlated within a 

given geographical area in a very significant manner, as 

they are influenced often by the same physical phenomena 

[6]. This correlation can have a significant impact on the 

power flow, voltage stability and reliability of power 

systems [6-8]. Thus, there is a clear need to develop an 

algorithm of probabilistic small signal stability analysis 

(PSSSA) which includes the uncertainty of wind 

generation and the dependencies of the wind sources. 

The probabilistic analysis was firstly applied in power 

system by Borkowska in [9] for power flow study and was 

firstly introduced into investigating small signal stability of 

power system by Burchett and Heydt in [10]. In the 

previous published literatures, a number of different 

probabilistic theory-based approaches have been proposed 

to deal with the uncertainty problems in power system. 

These approaches could be divided into three main 

categories: Monte Carlo simulation, analytical methods, 

and approximate methods. 

Monte Carlo simulation (MCS) which has been used in 

reliability assessment for many years is a repetitive 

procedure which generates a large number of random 

computational scenarios according to the distribution 

density of the input variables. In [11-13], MCS is 

introduced to study the influence of uncertainties of wind 

generation on power system small signal stability. 

Although MCS can provide accurate results, thousands of 

simulations are usually required to attain convergence and 

high computational burden makes this method unattractive. 

Most of researchers only use it for comparison purpose. 

The advantage of analytical methods such as fast Fourier 

transform (FFT), cumulant-based method is computational 

efficiency, but these methods rely on complex mathematical 
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approximations and extensive modifications of the original 

model. The method of combined cumulants and Gram-

Charlier expansion with considering the spatial correlations 

of wind generation is employed in [5] to determine the 

probabilistic small signal stability of power systems 

penetrated by multiple wind sources. This method utilizes 

first order eigenvalue sensitivity with respect to wind 

power generation, and the statement is made that this 

provides accurate results for the system under consideration. 

However, there are a number of situations where first order 

approximation may not be sufficient accurate [14]. 

Approximate methods provide an approximate description 

of the statistical properties of output random variables with 

reduced computational efforts compared to MCS. First-

order second-moment method (FOSMM) and point 

estimate methods (PEMs) fit into the family of approximate 

methods. Since Rosenblueth’s two point estimate method 

[15] needs a large number of simulations if the number of 

input random variables is high and Harr’s 2m PEM [16] is 

constrained to symmetric variables, 2m+1 scheme based on 

Hong’s point estimate method [17] is used in this paper. 

The main advantages are as following: 

1)  Compared with MCS, PEMs can calculate the 

statistical properties of output random variables with 

satisfactory accuracy and much less computation effort. 

2) As cumulant-based method, PEMs also utilize the 

statistical features of input random variables to provide 

(i.e., first few statistical moments), overcoming the 

difficulties associated with the lack of analytical 

expression of the probability functions of inputs; 

however different approaches are applied to obtain 

the statistical features of outputs, which is not based 

on the first order eigenvalue sensitivity terms. 

3) Hong’s PEM can deal with the case in which the 

variables are skewed, since the wind speed is 

generally treated as a random variable assumed to 

have a Weibull distribution which is not symmetrical. 

4) Among different schemes based on Hong’s PEM, the 

2m+1 scheme has been shown to have good 

performance in terms of both accuracy and 

computational time and is the most efficient scheme 

in dealing with non-normal distribution [18, 19]. 

 

The aim of PEMs is to compute the first moments of a 

random variable z  that is a function of m random input 

variables ix , i.e., 1( , , , , )i mz F x x x= ⋯ ⋯ . Knowing the 

first few statistical moments, it is possible to obtain the 

probability density functions (PDFs) or the cumulative 

density functions (CDFs) of the output variables by using 

the analytical expressions, such as Cornish-Fisher expansion 

method [20], Gram-Charlier expansion series. However, 

the original Hong’s PEM can only be applied when the 

input random variables are uncorrelated. Thus, a suitable 

adjustment has to be introduced to deal with the correlation. 

The well-known orthogonal (rotational) transformation 

technique is applied in this paper. 

This paper presents a probabilistic methodology based 

on 2m+1 PEM for small signal stability analysis of power 

system with correlated wind sources. The approach 

considers not only the stochastic characteristics of wind 

speeds which are treated as random variables with Weibull 

distributions, while also the wind speed spatial correlations 

which are characterized by a correlation matrix. The rest of 

the paper is organized as follows. Section 2 briefly 

describes wind speed correlation and its impact on power 

system. Section 3 gives a short review of the probabilistic 

small signal stability and presents the dynamic model of 

wind turbine. Section 4 explains the theoretical foundations 

of the 2m+1 PEM, together with Cornish Fisher expansion, 

and the orthogonal transformation technique. In section 5, 

a case study on IEEE New England system is carried out 

and the probabilistic indexes for PSSSA are computed 

from the statistical processing of the obtained results. The 

results are compared with those obtained by MCS to 

validate the accuracy and efficiency of the proposed 

method. Section 6 summarizes some relevant conclusions 

based on the numerical results. 
 
 

2. Wind Speed Correlation 
 
Wind is a highly variable and site-specific energy source 

with instantaneous, hourly, diurnal and seasonal variations 

of wind speed. Wind speeds at different wind sites can be 

assumed to be independent if they are far away from each 

other. However, the wind farms are correlated to some 

degree if the distances between the wind sites are not very 

large. This correlation can have a significant impact on the 

power flow, voltage stability and reliability of power 

systems. Therefore, it should be considered in PSSSA of 

power system integrated with wind power generation. 

The wind speed correlation between two wind sites can 

be calculated using cross-correlation. The cross-correlation 

coefficient ρxy is a measure of how well two time series 

follow each other [21], as shown in (1). 
 

 1

1
( )( )

n

i x i y

i

xy

x y

x y
n

µ µ
ρ

σ σ
=

− −
=

∑
  (1) 

 
where xi and yi are elements of the first and second time 

series, respectively, µ denotes the mean value, σ the 

standard deviation, and n the number of points of the time 

series. The value of ρxy is near the maximum value of 1.0, 

if the two time series totally dependent. The value is close 

to zero, if the two time series are basically uncorrelated. 

The cross-correlation coefficients were calculated for 89 

wind sites in Nebraska of US for one year 2004. The wind 

speed data was collected from the wind integration datasets 

of National Renewable Energy Laboratory’s website [22]. 

The Results is presented in figure Fig. 1, which shows the 

relationship between the cross-correlation coefficient and 
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the distance of two wind sites. The coefficient was fitted 

by exponential function with a damping ratio of 0.002907 

km-1. It can be seen from the figure that there is a decrease 

tendency for cross-correlation of two different wind sites as 

the distance increases. 

The wind speed time series during 1000 hour period for 

different wind-site-pairs with a maximum value (ρxy= 

0.9920), middle value (ρxy=0.500) and minimum (ρxy= 

0.1168) value of cross-correlation coefficients are shown in 

Fig. 2. This figure shows that in the high correlation level 

scenario, the up and down movements of the two wind 

time series occur in the same direction, in the low 

correlation level scenario, the two wind time series do not 

follow each other and are complementary in most of the 

time. Thus, high level correlation of wind speed will 

strength the synchronization (increase and decrease 

simultaneously) of different wind farms’ power output and 

increase the fluctuation of aggregated wind power output 

and low level correlation will smooth out the wind power 

variation. Fig. 3 shows the frequency distribution of hourly 

aggregated wind power of wind-site-pairs for one year with 

different correlation level. It can be seen in Fig. 3 that high 

correlation level increase the occasions with near zero and 

peak power output. 
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Fig. 2. Wind speed time series of wind-site-pairs with 

different correlation level 

Variable speed wind generators which are widely used 

today will not themselves cause electromechanical modes 

of oscillation. However, as illustrated above, the time-

varying and correlated wind speeds will change the 

aggregated wind generation and hence have the potential to 

indirectly change the damping performance of the system 

by [4, 23] : (i) significantly altering the dispatch of 

synchronous generation in order to accommodate wind 

generation; (ii) significantly altering the power flows in the 

transmission network; and (iii) interacting with 

synchronous machines to change the damping torques 

induced on their shafts. So it is necessary to consider the 

uncertainty and correlation of wind speeds in PSSSA of 

power system integrated with wind power generation. 

 

 

3. Probabilistic Small Signal Stability Analysis 

 

3.1 Modal analysis 

 

Small signal stability is the ability of a power system to 

maintain synchronism when subjected to small 

disturbances. The dynamic behavior of power system can 

be described by a set of nonlinear differential algebraic 

equations (DAEs): 

 

 
( , )

0 ( , )

=

=

x f x y

g x y

ɺ

 (2) 

 

where, n∈x R is the vector of state variables, i.e. 

synchronous and asynchronous machine rotor speeds, 

synchronous machine power angles, magnetic flux linkages, 

controller state variables, etc. 
m∈y R is the vector of 

algebraic variables, i.e. voltage amplitudes and phases at 

the network buses and all other algebraic variables such as 

generator field voltages, AVR reference voltages, etc. f are 

the vectors of non-linear functions defining the states and g 

consists of the stator algebraic equations and the power 

flow equations in the power-balance form. The most 

adequate tool to perform small signal stability studies is 

 

Fig. 1. Cross-correlation coefficients of the wind sites in 

Nebraska of US for one year 
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Fig. 3. Frequency distribution of aggregated wind power of 

wind-site-pairs with different correlation level 
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modal analysis which is performed by using the 

linearization of the DAEs (2) around a system operating 

point: 
 

 
0

∆ ∆    
=     ∆    

x y

x y

F Fx x

G G y

ɺ

 (3) 

 

Eliminating the algebraic variables ∆y  from (3), we get 

s∆ = ∆x A xɺ , where As is called state matrix implicitly 

assuming that Gy is non-singular: 

 

 
-1-=s x y y xA F F G G  (4) 

 
Analysis of the eigenproperties of As, such as 

eigenvalues, eigenvector, participation factor, provides 

valuable information regarding the stability of the system. 

According to Lyapunov’s first method, the small signal 

stability of a power system is given by the eigenvalues of 

As. If all eigenvalues have a negative real part, all 

oscillation modes (OM) decay with time and the system is 

said to be stable. The critical eigenvalues which determine 

the small signal stability of the power system are 

characterized by being complex and by being located near 

the imaginary axis of the complex plane. The damping 

ratio determines the rate of decay of the amplitude of the 

oscillation. The mode shape given by the right eigenvector 

helps to distinguish the various types of oscillation. 

Besides, the participation factor indicates the relative 

contribution of each state variable to a certain mode. The 

electro-mechanical (EM) oscillation mode is recognized 

according to the electro-mechanical relative coefficient 

EMρ  and the frequency of oscillation f, i.e., 1EMρ >  and 
0.2 2.5f< < Hz.  

When power system uncertainties are considered, the 

system’s equilibrium is no longer deterministic. In 

particular, the DAEs will contain non-deterministic system 

parameters which have known statistics. The presence of 

these random variables will cause the eigenvalues of As to 

be non-deterministic. It is the purpose of PSSSA to 

determine the probability density of the real part of the 

eigenvalues of As and characterize the stochastic nature of 

power system stability. 

In this paper, the wind speed is chosen as the uncertain 

parameter and other uncertainties are neglected. A widely 

used Matlab-based power system analysis and simulation 

tool — Power System Analysis Toolbox (PSAT) [24], is 

used to run the power flow and calculate the eigenvalues 

and other eigenproperties of state matrix As of the 

investigated scenarios.  

 

3.2 DAEs of doubly-fed induction generator system 

 

Nowadays, wind turbines of variable speed type have 

become more common than traditional fixed speed turbines. 

Especially, the Doubly-Fed Induction Generator (DFIG) -

based wind turbine is gaining prominence in the power 

industry due to its characteristics of high energy transfer 

efficiency, low investment and flexible control. Therefore, 

wind farms represented by DFIG-based wind turbines will 

be used in PSSSA in this paper. 

The dynamic model of DFIG system contains the several 

components: driven train, pitch controller, generator, and 

converter controller. The DAEs of DFIG system is 

presented in Appendix A and the following assumptions 

and strategies are adopted. 

The drive train comprising turbine, gearbox, shafts and 

other transmission components is represented by a two-

mass model. 

The dynamic model of the grid-side converter controller 

is neglected as it is noted that the dynamics of rotor-side 

converter controller has more significant impact on the 

power system small signal stability than grid-side converter 

controller. The decoupling control strategy developed in 

[25] is used for the active power and reactive power of 

rotor-side converter. The stator voltage-oriented control 

scheme is adopted, which makes the stator voltage line in 

accordance with q-axis of d-q reference frame, then uds 

becomes zero and uqs is equal to the magnitude of the 

terminal voltage. 

 

 

4. Solution Method 

 

4.1 2m+1 PEM 

 

The 2m+1 PEM developed in [17] is applied in this 

paper to solve the problem of PSSSA, where m is the 

number of input random variable. This method uses 

deterministic routines for solving probabilistic problems; 

however, it generally requires a lower computational 

burden compared with MCS.  

Random variables jz  is function jF  of m input 

random variables ( 1 2, , , mx x x⋯ ): 

 

 1 2( ) ( , , , )j j j mz F F x x x= =x ⋯  (5) 

 

The 2m+1 PEM is used to obtain the first few moments 

of the output random variables of interest only required 

few statistical moments of the input random variables. To 

obtain these moments, the function jF  has to be 

calculated 2m+1 times. For each input random variable ix , 

the function jF  is calculated using two input variable 

vectors ,1ix , ,2ix : 

 

 
1 2

T

, ,
ˆ( , , , , , )

mi k x x i k x
xµ µ µ=x ⋯ ⋯  k=1, 2 1,2, ,i m= ⋯  (6) 

 

Where ,
ˆ
i kx  is called the location of ix , 

ix
µ  is the 

means of the m-1 remaining input variables. 

After 2m calculations are carried out, one addition 

evaluation of the function F is required at the point µx  
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constituted by the means of all of the input random 

variables: 

 

 
1 2

T( , , , , , )
mx x xi xµ µ µ µ µ=x ⋯ ⋯  (7) 

 

Once the solution of the 2m+1 functions ( )jF ⋅  is known, 

the moments of the output random variables can be 

obtained by using the weighting factors ,i kw , 0w  

associated with ,i kx  and µx , respectively. 

The pair , ,
ˆ( , )i k i kx w  composed by a location ,

ˆ
i kx  at 

which function ( )jF ⋅  is to be evaluated and a weighting 

factor ,i kw  measuring the impact of this evaluation on the 

random behavior of output variable jz  is called the kth 

(k=1, 2) concentration of the random input variable ix . 

For each input random variable ix , the location ,
ˆ
i kx  is 

depend on the first four central moments and expressed as 

 

 , ,
ˆ

i ii k x i k xx µ ξ σ= +  k=1, 2 (8) 

 

where 
ix

µ  and 
ix

σ  are the mean and standard deviation 

of ix , respectively, ,i kξ  is the standard location: 

 

 
,3 3 2

, ,4 ,3

3
( 1)

2 4

i

i i

x k

i k x x

λ
ξ λ λ−= + − −  k=1, 2 (9) 

 

where ,3ix
λ  and ,4ix

λ  denote the third and fourth 

standardized central moments of ix  with probability 

density function ( )if x , are also the skewness and kurtosis 

of ix .  
 

 
,

,

i

i

i

x r

x r r

x

µ
λ

σ
=  r=3, 4 (10) 

 , ( ) ( )
i i

r

x r x ix f x dxµ µ
+∞

−∞

= −∫  r=3, 4 (11) 

 
where ,ix rµ  is the rth central moments of ix . 

Each location ,
ˆ
i kx  is coupled with a weighting factor 

,i kw computed as 

 

 ( )
3

,

, ,1 ,2

( 1) k

i k

i k i i

w
ξ ξ ξ

−−
=

−
 k=1, 2 (12) 

 0 2
1 ,4 ,3

1
1

( )
i i

m

i x x

w
λ λ=

= −
−∑  (13) 

 

Once all the concentrations of input random variables 

are determined by using (8)-(13), the 2m+1 evaluations of 

function ( )jF ⋅  is then calculated as 

 

 
1 2, ,

ˆ( , ) ( ) ( , , , , , )

1, 2, , , 1, 2

mj j i k j x x i k xz i k F F x

i m k

µ µ µ= =

= =

x ⋯ ⋯

⋯   

 (14) 

 ( )
1 2

(2 1) ( ) , , , , ,
mj j j x x xi xz m F Fµ µ µ µ µ+ = =x ⋯ ⋯  (15) 

The nth raw moment of the output random variable jz , 

denoted by ,jz nm  is estimated as 
 

 ,
( )

j

n

z n j
m E z= ≈

2

, , 0

1 1

[ ( )] [ ( )]
m

n n

i k j i k j

i k

w F w F µ
= =

+∑∑ x x   (16) 

 
where ( )E ⋅  denotes the expectation operator. The mean 

value and the standard deviation of jz , denoted by 
jz

µ  

and 
jz

σ , can be estimated according to (16). 
 

 ,1 ( )
j jz z jm E zµ = = ≈

2

, , 0

1 1

( ) ( )
m

i k j i k j

i k

w F w F µ
= =

+∑∑ x x   (17) 

 
2

,2
( )

jz j
m E z= ≈

2
2 2

, , 0

1 1

[ ( )] [ ( )]
m

i k j i k j

i k

w F w F µ
= =

+∑∑ x x   (18) 

 
2 2 2

,2 ,1( ) [ ( )]
j j jz j j z zE z E z m mσ = − = −   (19) 

 

4.2 Cornish fisher expansion 

 

Knowing the statistical moments, it is possible to obtain 

the PDFs or the CDFs of the output variables by using the 

Cornish-Fisher expansion method or Gram-Charlier 

expansion series [20]. Ref.[26] proved that Cornish-Fisher 

expansion is more adequate for the problem conditions 

(non-Gaussian PDF of the wind power uncertainties), 

instead of the Gram-Charlier expansion series. So in this 

paper, the Cornish-Fisher expansion approach is applied to 

compute the PDFs and the CDFs of the output random 

variables. This approach provides the approximation of the 

normalized quantiles α  of any cumulative distribution 

function F(x) in terms of the quantile of the standard 

normal N(0,1) distribution Φ  and the cumulants of F(x). 

Using the first five cumulants, the expansion is given by 

(20). 
 

-1 -1 2 -1 3 -1

3 4

-1 3 -1 2 -1 4 -1 2

3 5

-1 4 -1 2 -1 4 -1 2 3

3 4 3

1 1
( ) ( )+ ( ( ) -1) + ( ( ) -3 ( ))

6 24

1 1
- (2 ( ) -5 ( )) + ( ( ) -6 ( ) +3)
36 120

1 1
- ( ( ) -5 ( ) +2) + (12 ( ) -53 ( ) +17)
24 324

x α α α κ α α κ

α α κ α α κ

α α κ κ α α κ

≈ Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

 

  (20) 
 

where 
-1( )= (x)x Fα . iκ  is the ith cumlants, which can be 

obtained from its raw moments as follows: 
 

 

1 1

1

1

1
( 2

i

i i k i k

k

m

i
m m i

k

κ

κ κ
−

−
=

=

− 
= − ⋅ ⋅ ≥ 

 
∑   ）

  (21) 

 
4.3 Managing the correlations of input variables 
 
The procedure mentioned above can only be applied 

when the input random variables are uncorrelated. In the 

presence of correlation among random input variables, the 

well-known orthogonal (rotational) transformation technique 
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is used to transform the set of input correlated random 

variables x  into an uncorrelated set of random variable 
y . Once the set of uncorrelated variables is obtained, the 

2m+1 PEM described by (8)-(13) can be applied and then 

the concentrations of y  is determined. Finally, these 

points are untransformed to the original correlated variable 

space. The details about the procedure can be found in [6]. 

 

4.4 Computational procedure of PSSSA 

 

The computational procedure to solve a PSSSA problem 

with correlated wind sources using the 2m+1 PEM is 

summarized below. 

(1) The random wind speeds of m correlated wind farms 

are considered as the input random variables 
T

1 2
( , , , , , )

i m
x x x x=x ⋯ ⋯ . Known the PDF of ix  

and the correlation coefficient matrix ρ , determine 

the covariance matrix xC  and calculate the first four 

central moment of each variable ix . 

(2) Transform the first four central moments of x  into 

uncorrelated space by applying the orthogonal 

transformation. 

(3) Determine all the concentrations , ,
ˆ( , )i k i ky w  according 

to (8)-(13) and formed the 2m+1 transformed input 

points ,i ky , µy . 

(4) Obtain ,i kx , µx  which are in the original space by 

using inverse transformation. 

(5) Run the deterministic power flow for 2m+1 input 

point (wind speed) ,i kx  and µx . 

(6) Solve jz  which denote the eigenvalues and the 

eigenvectors of state matrix, damping ratio and 

participation factors at each deterministic operating 

point determined by power flow. Estimate the raw 

moments of jz  as expressed in (16)-(19). 

(7) After obtaining the moments of the eigenvalues, find 

the CDFs of real part of critical modes(CMs) by 

applying the Cornish-Fisher expansion as explained 

in (20), (21), and then determine the probability of 

power system small signal stability. 

 

All the steps described above have been implemented in 

MATLAB with the help of PSAT. 

 

 

5. Case Study 

 

5.1 Simulation conditions and assumptions 

 

In this section, the proposed algorithm will be applied in 

the PSSSA of the IEEE New England (10-machine 39-bus) 

system [27], modified to include two wind farms, to 

demonstrate its validity. 

In this system, two 375MW wind farms having 250 

1.5MW DFIG-type wind turbines are located at bus 40 and 

41 which connected with bus 33 and 34 via transformers. 

Each wind farm is regarded as an aggregated wind turbine 

which is represented by the dynamic model of DFIG 

described in section 3.2 and the parameters of the DFIG 

system is presented in [28]. Synchronous generator G2 

considered as the swing bus is modeled by the classic 

electro-mechanical model (the 2nd-order model). The other 

6 synchronous generators are all modeled by the 4th-order 

models, with magnetic saturation neglected, and extended 

by 3rd-order exciter models.  

The same Weibull distribution of wind speed wv  as 

stated in (22), with scale and shape parameters, c and k, 

equal to 7.65 and 2.06, respectively, is used to model wind 

speed at both sites.  

 

 

1

( , , )

k
wvk

cw

w

vk
f v c k e

c k

−  
− 
  

=  
 

 (22) 

 

5.2 Performance evaluation  

 

In order to demonstrate the accuracy and efficiency of 

the proposed method, a comparison of the results obtained 

by 2m+1 PEM are compared with those obtained by a 

MCS with 5000 trials. Inverse Nataf transformation is 

adopted in this paper to generate the random samples of 

correlated wind speed in the MCS.  

Table 1 shows the mean value µ and standard deviation 

σ of the real part of critical eigenvalue Eigreal with 

different wind speed correlations (ρxy=0.1 to ρxy=0.9 with a 

step of 0.1). The results indicate that the proposed method 

provides a good approximation by comparing the results 

from MC method, both for the mean value and the standard 

deviation. However, MC requires 5000 simulations while 

the proposed 2m+1 PEM method requires only 5 

simulations. Therefore the conclusion is made that 2m+1 

PEM method can provide accurate results and is 

computationally much more efficient than MCS. 

 

5.3 Impact of wind speed correlation on PSSSA 
 
Two situations are presented using the proposed method 

to illustrate the importance of modeling wind farms with 

considering wind speed correlation: weak correlated 

Table 1. Mean and standard deviation of Eigreal with 

different wind speed correlations 

PEM MCS 
xyρ

  µ
 

σ  
µ

 
σ  

0.1 -0.0861 0.0184 -0.0861 0.0184 

0.2 -0.0853 0.0220 -0.0852 0.0219 

0.3 -0.0847 0.0221 -0.0844 0.0221 

0.4 -0.0839 0.0228 -0.0839 0.0224 

0.5 -0.0829 0.0231 -0.0831 0.0231 

0.6 -0.0818 0.0262 -0.0818 0.0260 

0.7 -0.0811 0.0263 -0.0811 0.0263 

0.8 -0.0790 0.0279 -0.0789 0.0274 

0.9 -0.0781 0.0322 -0.0781 0.0322 
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situation (ρxy=0.1) and strong correlated situation (ρxy=0.9). 

Fig. 5 shows the wind speed joint distribution using 2m+1 

PEM and MCS respectively, under two situations. By 

comparing of (a) and (b), wind speed joint distribution 

tends to concentrate more on the diagonal in the strong 

correlated case than the weak correlated case, which will 

strength the synchronization of two wind farms’ power 

output and may change the probability of small signal 

stability. 

Based on the computational procedure described in 

section 4, the PSSSA of the power system concluding two 

wind farms is conducted and the statistic information of 

eigenvalues is then evaluated. By using Cornish-Fisher 

expansion, the CDF of the real part of critical eigenvalue 

which determine the small signal stability of the system 

can be obtained, as shown in Fig. 6, assuming weak 

correlated and strong correlated respectively. Obviously, 

the results indicate a difference in the probability of small 

signal stability between the two situations. It can be 

observed from Fig. 6 that the critical eigenvalue of the 

system has a probability of 98.90% to remain in the left 

half-plane in weak correlated situation, in other words, the 

system has a probability of 1.1% to be unstable. However, 

in the strong correlated situation, the probability of small 

signal stability of the system decreases to 96.98%. 

Furthermore, in order to study the impact of correlation 

level of wind speed on PSSSA, a set of wind speed 

correlation coefficients as shown in Table 1 is used to 

calculate the probability of small signal stability of the test 

system. The results are shown in Fig. 7. It can be seen from 

Fig. 7 that wind speed correlation has a negative impact on 

the small signal stability as the degree of correlation 

between the two wind farms increases. When the 

correlation coefficient changes from 0.1 to 0.9 (weak 

independent caseec to strong independent case), the 

probability of small signal stability is decreased from 

98.90% to 96.98%. 

In addition to the real part of critical mode Eigreal, the 

mean and standard deviation of other important properties: 

the oscillation frequency f, damping ratio ξ  and the 

electro-mechanical relative coefficient EMρ  are also 

shown in Fig. 8. Fig. 8 shows that along with the increase 

of correlation coefficient, Eigrealµ  and 
EMρµ  increase with 

percentage change of 4.78%, 9.29% respectively, fµ  and 

ξµ  decreases with percentage change of -0.77%, -19.17% 

respectively. The standard deviations of all properties 

increase, the percentage change corresponding to Eigrealσ , 

fσ , ξσ  and 
EMρσ  are 75%, 40.49%, 75.65% and 27.94%. 

The standard deviations can be seen as a measure of the 

uncertainty level affecting the power system, and therefore 

the smaller they are, the better. So the conclusion can be 

drawn that the damping performance of the test system 

tends to deteriorate and the variation of critical mode 

properties becomes larger as the correlation level of two 

wind farms increases.  

 

5.4 EM mode analysis 
 
EM oscillation modes of moderate correlated case 

(ρxy=0.5) are recognized by using the criterion of 1EMρ >  

and 0.2 2.5f< < Hz. There are nine EM oscillation 
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(b) Strong correlated situation 

Fig. 5. Wind speed joint distribution 
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Fig. 6. The CDF comparison of the real part of critical 

eigenvalue 
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modes in the modified 10-machine 39-bus system, due to 

the two DFIG based wind turbines do not engage in power 

system oscillation [2, 4]. The mean and standard deviation 

of mode properties are depicted in Fig. 9. It can be seen 

from Fig. 9 that the damping performances of 8th EM (local 

oscillation) and 9th EM (inter-area oscillation) are greatly 

influenced by the fluctuation of wind power output. 

 

 

6. Conclusion 
 
In this paper, a methodology based on the 2m+1 PEM 

combined with Cornish-Fisher expansion and modal 

analysis is applied to solve the problem of probabilistic 

small signal stability of power systems with correlated 

wind sources.  

A case study is carried out on the modified IEEE New 

England system with two grid-connected DFIG wind farms 

and the wind speeds with Weibull distribution are regarded 

as the input random variables. The accuracy and efficiency 

of the proposed method are confirmed by comparing with 

the results of MCS. The stable probability is assessed based 

on the statistical information of critical eigenvalues 

obtained by conducting the proposed method. Comparison 

of different correlation situations shows that wind speed 

correlation has a negative impact on the small signal 

stability as the degree of correlation between the two wind 

farms increases. Finally, electro-mechanical oscillation 

modes of the system are picked out; the numerical results 

indicate that the proposed method can actually capture the 

probabilistic characteristics of mode properties of the 

power systems with correlated wind sources. 
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Appendix: DAEs of DFIG system 
 

Nomenclature: 
,t rω ω   : Wind turbine and generator rotor angle speed 

ω   : Synchronous angle speed 
,t gH H  : Inertia constants of the turbine and the 

generator 
,m eT T   : Mechanical and electrical torque 

sK , sθ  : Shaft stiffness coefficient and shaft twist angle 

D   : Damping coefficient 
ρ   : Air density 

R  : Wind turbine blade radius 

pC   : Power coefficient 

wv   : Wind speed 
β   : Pitch angle 

,pp piK K  : Proportional and integrating gains of the 

wind turbine speed regulator 
,ds qsψ ψ  : Stator flux (dq components) 

,dr qri i  : Rotor current (dq components) 

qsu   : Stator voltage (dq components) 
,dr qru u  : Rotor voltage (dq components) 

sR   : Stator resistance 
,rr ssL L  : Rotor and stator self-inductance 

mL   : Mutual inductance 

1 2 3 4, , ,x x x x  : Intermediate variables 

1 1,p iK K  : Proportional and integrating gains of the 

active power regulator 

2 2,p iK K : Proportional and integrating gains of the 

reactive power regulator 
,p iC C  : Proportional and integrating gains of the rotor-
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Fig. 8. The mean and standard deviation of critical mode 

with different wind speed correlation coefficient 
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Fig. 9. The mean and standard deviation of EM mode 

properties 
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side converter current regulator 
,ref refP Q  : Active and reactive power control reference 

,s sP Q  : Active and reactive power of stator-side 

 

Wind turbine and driven train: 

1
[ ( )]

2
t m s s t r

t

T K D
H

ω θ ω ω= − − −ɺ  

1
[ ( ) ]

2
r s s t r e

g

K D T
H

ω θ ω ω= + − −ɺ  

s t rθ ω ω= −ɺ  

2 30.5 p w

m

t

R C v
T

ρπ

ω
=  

( )e ds qr qs drT L i iψ ψ′′= −  

 

Pitch controller: 

( )

2

m s s t r

pp pi t

t

T K D
K K

H

θ ω ω
β ω

− − −
= + ∆ɺ  

 

Generator: 

s

ds ds s dr qs

ss

R
L R i

L
ψ ψ ωψ′′= − + +ɺ  

s

qs qs s qr ds qs

ss

R
L R i u

L
ψ ψ ωψ′′= − + − +ɺ  

1
[ ( ) ( )

( )]

dr r dr dr r qr r qs

s

ds s dr qs

ss

i R i u L i L
L

R
L L R i

L

ω ω ω ω ψ

ψ ωψ

′ ′′= − + + − + −
′

′′ ′′− − + +

ɺ

    

 

1
[ ( ) ( )

( )]

qr r qr qr r dr r ds

s

qs s qr ds qs

ss

i R i u L i L
L

R
L L R i u

L

ω ω ω ω ψ

ψ ωψ

′ ′′= − + − − − −
′

′′ ′′− − + − +

ɺ

    

 

2

,m m

rr

ss ss

L L
L L L

L L
′ ′′= − =  

 

Rotor-side converter: 

1 ref sx P P= −ɺ  

2 1 1 1( )p ref s i qrx K P P K x i= − + −ɺ  

3 ref sx Q Q= −ɺ  

4 2 2 3( )p ref s i drx K Q Q K x i= − + −ɺ  

2 2 3 4( ( ) ) ( )( )dr p p ref s i dr i r qr qsu C K Q Q K x i C x L i Lω ω ψ′ ′′= − + − + − − +  

1 1 1 2( ( ) ) ( )( )qr p p ref s i qr i r dr dsu C K P P K x i C x L i Lω ω ψ′ ′′= − + − + − − +  

( )
qs

s qs qr

ss

P u L i
L

ψ
′′= − +  

( )ds

s qs dr

ss

Q u L i
L

ψ
′′= − +  
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