• Title/Summary/Keyword: Sprinkler systems

Search Result 61, Processing Time 0.025 seconds

A Study on the Fire Protection System in the Stage (공연장의 소방시설 설치기준의 개선방안에 관한 연구)

  • 장상태;이영재
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.13-19
    • /
    • 1999
  • Currently, conventional fire prevention facility installation standard is based on the use and size of the domestic theaters. In the study, theaters with 1,900 seats were examined to suggest a suitable method to adapt a better fire preventing system. The proposed systems are as follow. - 100% of backup pressed-water outlet device, considering waterproof pressure for fire prevention facility at the top floor. - The supplement of the side wall type header and a large caliber outlet header for stage open sprinkler. - Subdividing a installation rule for special detector and implementing the latestdetector. - Installation of fire curtain for dividing stage area and auditorium area, and also the method of installation of fire curtain.

  • PDF

Numerical Simulation of Erosive Wear on an Impact Sprinkler Nozzle Using a Remeshing Algorithm

  • Xu, Yuncheng;Yan, Haijun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.287-299
    • /
    • 2016
  • In China, agricultural irrigation water often contains a lot of suspended sediment which may cause the nozzle wear. In this study, a new numerical simulation combing the Discrete Phase Model and a remeshing algorithm was conducted. The geometric boundary deformation caused by the erosion wear, was considered. The weight loss of the nozzle, the node displacement and the flow field were investigated and discussed. The timestep sensitivity analysis showed that the timestep is very critical in the erosion modeling due to the randomness and the discreteness of the erosion behavior. Based on the simulation results, the major deformation of the boundary wall due to the erosion was found at the corners between outlet portion and contraction portion. Based on this remeshing algorithm, the simulated erosion weight loss of the nozzle is 4.62% less compared with the case without boundary deformation. The boundary deformation changes the pressure and velocity distribution, and eventually changes the sediment distribution inside the nozzle. The average turbulence kinetic energy at the outlet orifice is found to decrease with the erosion time, which is believed to change the nozzle's spray performance eventually.

A Study on the Plastic deformation Absorption Characteristics of Aluminum-Polyethylene Composite Structure Sprinkler Pipe (알루미늄 합성수지 복합 구조 스프링클러 파이프의 변위 흡수 특성 연구)

  • Kim, Jun-Gon;Kim, Kwang-Beom;Noh, Sung-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.426-433
    • /
    • 2019
  • After an earthquake, fire and gas explosions are more likely to cause more casualties in cities with many apartment buildings and large complex buildings. In order to prevent this, seismic design is necessary for the fire protection sprinkler system. However, most systems currently use stainless-steel pipes, although synthetic resin pipes are used in some special places. These materials are susceptible to vibration and earthquakes. This study evaluated the displacement absorption flexibility of polyethylene (PE) and aluminum (Al) multi-layered composite pipes to increase the seismic performance in a vibration environment and during earthquakes. The seismic performance was compared with that of a stainless-steel and PE pipes. The seismic characteristics can be measured by measuring the amount and extent of vibration transmitted by the sprinkler pipe. This method can be used to judge the seismic characteristics to attenuate the vibration during an earthquake. The seismic characteristics of the pipe were verified by comparing the logarithmic attenuation rate to the initial response displacement of the vibration generated by the transverse vibration measurement method.

Growth Comparison of Juvenile Abalone, Haliotis discus hannai in Different Culture Systems in the West Coast of Korea (서해안에서 사육시스템 종류별 참전복 치패의 성장 비교)

  • Moon, Seong-Yong;Yoon, Ho-Seop;Seo, Dae-Chol;Choi, Sang-Duk
    • Journal of Aquaculture
    • /
    • v.19 no.4
    • /
    • pp.242-246
    • /
    • 2006
  • Comparisons of growth and survival rate in different culture systems for juvenile abalone were determined in the West Coast of South Korea from June, 2000 to April, 2001. Daily growth rate reached at the maximum by $148.6{\pm}48.96\;{\mu}m/day$ with a stagnant system and at the minimum by $95.3{\pm}21.45\;{\mu}m/day$ with a sprinkler culture system. Survival rate of the juvenile abalone was significantly higher than that in sprinkler culture with a rotary culture (P<0.05). The highest survival rate was 50.0% in the rotary culture and 38.3% was observed in the stagnant culture system. The results from this study indicate that effective survival and growth rate could be predicted in the rotary culture system.

LATEST DEVELOPMENTS FOR FIRE DETECTION AND SUPPRESSION APPLICATIONS

  • Grant, Casey C.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.573-581
    • /
    • 1997
  • Much activity is occurring throughout the world with respect to the implementation of new concepts and technology for fire detection and fire suppression applications. Obvious advances include tangible detection and suppression improvements, and also new methods and approaches such as performance based codes and standards. Examples of tangible advances include addressable detection systems, wireless detection technology, halon alternatives, water mist systems, advanced sprinkler technology, and so on. Examples of new approaches and methods include a revitalized focus on disaster planning and the need for a total fire protection plan. The concept of performance based codes and standards for the design and installation fire detection and suppression systems will be explored in detail.

  • PDF

Remote Control of Pumping System for Underground Water Pollution and Running Dry Prevention Using Ubiquitous (유비쿼터스를 이용한 지하수 오염과 고갈방지를 위한 펌핑시스템의 원격제어)

  • Tack, Han Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • This paper was development of remote controller of pumping system by using ubiquitous for underground water contamination prevention in the area of glasshouse facility. This paper automatically controls from to temperature and humidity for pumping sprinkler at water hanging cultivation. This prevents indiscreetive development of underground water, and prevents damage of environmental pollution without complementary measures in case of water lacked humble-void. The result of this research, confirms decrease of electrical fee, prevention of indiscreet underground water usage and its drying up thought optimum farm products management and pumping control system.

The Survey and its Effect for Cooling Systems used in Dairy Cattle Farms in Gyeonggi (경기지역 젖소 농가 고온저감시설 활용 실태조사 및 축사내 온습도 변화)

  • Lee, Jun-Yeob;Choi, Hee-Cheol;Lee, Dong-Hyun;Woo, Saem-Ee;Ki, Kwang-Seok;Jeon, Jung-Hwan
    • Journal of Animal Environmental Science
    • /
    • v.21 no.2
    • /
    • pp.55-64
    • /
    • 2015
  • This survey was conducted to give the basic information and temperature and humidity variation by cooling systems in dairy farms in Korea. A total of 36 farms were surveyed in Gyeonggi province with the general information of farms such as milk production, and milk quality, types of cooling systems, and its operation method of dairy farms. All of surveyed farms have cooling fan and some have 1 more cooling systems such as sprinkler, foggy systems, ventilation duct, and shower system. Although the indoor THI of cow house was decreased by either ventilation duct or foggy system during hot season, the range belongs to mild heat stress scale for dairy cows.

IoT based Electronic Irrigation and Soil Fertility Managing System

  • Mohammed Ateeq Alanezi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.146-150
    • /
    • 2023
  • In areas where water is scarce, water management is critical. This has an impact on agriculture, as a significant amount of water is used for that purpose. Electronic measurement equipment are essential for regulating and storing soil data. As a result, research has been conducted to manage water usage in the irrigation process. Many equipment for managing soil fertility systems are extremely expensive, making this type of system unaffordable for small farmers. These soil fertility control systems are simple to implement because to recent improvements in IoT technology. The goal of this project is to develop a new methodology for smart irrigation systems. The parameters required to maintain water amount and quality, soil properties, and weather conditions are determined by this IoT-based Smart irrigation System. The system also assists in sending warning signals to the consumer when an error occurs in determining the percentage of moisture in the soil specified for the crop, as well as an alert message when the fertility of the soil changes, since many workers, particularly in big projects, find it extremely difficult to check the soil on a daily basis and operate agricultural devices such as sprinkler and soil fertilizing devices.

Study on Guideline of Water Supply System for Forest Fire (산불방지 급수시설 설치 기준 마련에 관한 연구)

  • Kim, Dong-Hyun;Nam, Song-Hee;Keum, Si-Hoon
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 2013
  • Permanent water supply and water sprinkling systems are essential to protect major forests and facilities from forest fire. Back in 2005, Naksan Temple, a valuable cultural asset of Korea, was burned down in a forest fire that took place in Yangyang. This started a series of movements including installing water supply facilities and managing forests near important cultural assets. As for the existing facilities, however, they were installed without any standard guidelines for management and installation according to each constructor's specifications, which were based on the National Fire Safety Code 109. Unfortunately, this is not effective in protecting facilities from forest fires such as they have a small protection area, limited simultaneous sprinkling, and a difficult the movement of fire hose. Against this background, the study examines the condition of water supply facilities currently in use, identifies their deficiencies, and suggests how to improve the criteria for water supply service to effectively prevent forest fire. Specifically, three systems were proposed: Water Sprinkler Tower System for preventing spread of crown fires, and Forest Fire Hydrant System and Portable Water Spray System to be effective for suppressing surface fires. In addition, the standards on the performance and components of water pumps are also suggested.

A Study on the Application of Hydraulic Calculations considering the Corrosion Coefficient of Steel Piping for Fire Protection (소방용 강관배관 부식계수를 고려한 수리계산 적용방안에 관한 연구)

  • Mun, Chul-Hwan;Kang, Ho-Jung;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.69-77
    • /
    • 2020
  • With the recent enlargement and complication of buildings, damage caused by the incidents of fires breaking out are escalating. Consequently, the use of sprinkler facilities is increasing among water-based fire extinguishing systems. Piping materials used in fire prevention systems include carbon steel (for general or pressure pipeline), CPVC, copper, and stainless-steel. Among these, the steel and CPVC pipes, which are commonly employed in fire prevention, were considered for testing the reliability of the water-based systems. This analysis was performed using the PIPENET software to perform hydraulic calculations in order to examine the flow and pressure at the terminal head when the corrosion coefficient was applied; this coefficient was applied considering the aging of pipes. Assuming a uniform pipe diameter in the steel pipes, the rated flow in the pump installed on the first floor of the basement was reduced by over 10% after 20 years had passed (C value of 90); moreover, the reduction in pressure and flow at its terminal head exceeded 30% and 16.5%, respectively. The results indicate that it is difficult to ensure the reliability of these fire prevention facilities. Furthermore, according to our estimation, considering 30 years had passed (C value of 80), the rated flow of the pump was reduced by over 15%, and the corresponding reduction in pressure and flow at its terminal head exceeded 42% and 24%, respectively.