• Title/Summary/Keyword: Spray method

Search Result 1,422, Processing Time 0.028 seconds

Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries (리튬이차전지용 음극활물질로서 Micro sized Silicon/CNT/Carbon 복합입자의 전기화학적 특성)

  • Shin, Min-Seon;Lee, Tae-Min;Lee, Sung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.112-121
    • /
    • 2019
  • In this study, silicon / carbon nanotube / carbon composite particles with high capacity were fabricated by using micro-sized silicon particles and carbon nanotubes as an anode material for lithium ion batteries. The silicon / carbon nanotube / carbon composite particles were prepared by spray drying method to prepare spherical composite particles. The composite particles have the network structure of the carbon nanotubes around the silicon particles, in which the silicon particles and the carbon nanotubes are bonded by amorphous carbon. It appears that the volume expansion of silicon is effectively buffered and the electrical contact is maintained in the network structure of the composite particles during charge-discharge cycles.

Efficient Management of the pH of the Wet Scrubber Washing Water for Risk Mitigation (리스크 완화를 위한 Wet Scrubber 세정수 pH의 효율적 관리)

  • Joo, Dong-Yeon;Seoe, Jae Min;Kim, Myung-Chul;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Wet Scrubber reacts the incoming pollutant gas with cleaning water (water + absorbent) to absorb pollutants and release the clean air to the atmosphere. Wet scrubbers and packed tower scrubbers using this principle are widely used in businesses that emit acid gases. In particular, in the etching process using hydrochloric acid (HCl), alkaline washing water (NaOH) having a pH of about 8 to 11 is used to absorb a large amount of acid gas. However, These salts are attached to the injection nozzle (nozzle), filling material (packing), and the demister (Demister), causing air pollution, human damage, and inoperability due to clogging and acid gas discharge. Therefore, In this study, an improvement plan was proposed to manage the washing water with pH 3~4 acidic washing water. The test method takes samples from the Wet Scrubber flue measurement laboratory twice a month for 1 year. Hydrogen chloride (HCl) concentration (ppm) was measured, and nozzle clogging and scale conditions were measured, compared, and analyzed through a differential pressure gauge and a pressure gauge. As a result of the check, it was visually confirmed that the scale was reduced to 50% or less in the spray nozzle, filler, and demister. In addition, the emission limit of hydrogen chloride in accordance with the Enforcement Regulation of the Air Quality Conservation Act [Annex 8] met 3 ppm or less. Therefore, even if the washing water is operated in an acidic pH range of 3 to 4, it is expected to reduce air pollution and human damage due to clogging of internal parts, and it is expected to reduce maintenance costs such as regular cleaning or replacement of parts.

A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles (나노 입자의 플라즈모닉 현상 증폭을 위한 나노구조 표면과 제작방법에 관한 연구)

  • Yi, Jae Won;Jeong, Myungyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.55-59
    • /
    • 2022
  • In this paper, we compared the electric field and absorptance of nano particles in nanostructures by amplifying the electric field around the nanoparticles through plasmon resonance and comparing the structure that can increase the absorptance with the nanostructure by using the Finite Different Time Domain (FDTD) simulation. In addition, the width of the nanostructure was adjusted to 240 nm ~ 300 nm, and the light absorptance rate was higher as the gap between the particles was short. In addition, a study was conducted on the formation of nanoparticles and nanostructures on the surface through UV imprint. In order to form particles in the structure, the nano particles were first arranged in the mold used for the fabrication of the structure using spray coating, and then fabricated through UV imprinting. The nanostructure and particles were formed together by scanning electron microscopy.

Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study

  • Rashin Bahrami;Maryam Pourhajibagher;lireza Badiei;Reza Masaeli;Behrad Tanbakuchi
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.16-25
    • /
    • 2023
  • Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

Genetic Analysis on the Linkage Relationship Between Blast Resistance Gene and Plant Height Gene in Rice (Oryza sativa L.) (수도 도열병 저항성과 간장간의 연관에 관한 유전분석)

  • Ha, S.B.;Chae, Y.A.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.3
    • /
    • pp.203-208
    • /
    • 1984
  • This study was investigated to know the possible linkage relationship between blast resistance gene and plant height gene in rice. Two resistant varieties, Tadukan and Tetep were crossed with six susceptible semi-dwarf tester lines. Progenies derived from the crosses were inoculated with spray method at 3-4 leaf stage with blast races, C-8$^{+t}$ and T-2$^{+t}$. The results indicated that: (1) Resistance of Tadukan and Tetep to the C-8$^{+t}$ was controlled by a single dominant gene, respectively. (2) Resistance of Tadukan and Tetep to the T-2$^{+t}$ was expressed by complementary gene action between two dominant genes, respectively. (3) No linkage relationship was found between resistance gene and plant height gene of both Tadukan and Tetep when tested with C-8$^{+t}$ and T-2$^{+t}$, respectively.espectively.

  • PDF

Paddy Weeds Serving as the Possible Reservoirs for Rice Bacterial Leaf Blight (답잡초를 대상으로 벼 흰빛잎아름병 기주절위구명)

  • Kim, K.U.;Jeh, S.Y.;Sohn, J.K.;Lee, S.K.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 1981
  • This study was conducted to identify the possibility of paddy weeds served as the host plant of bacterial leaf blight, using various bacterial groups and inoculation methods. The results obtained can be summarized as follows. 1. Alopecurns spp., Setaria viridis P. Beauv., and Leersia juponica Makino were identified the most susceptible to bacterial leaf blight, similar to Milyang 23 which was used as a susceptible check variety. The others such as Digitaria adscendens Hem., Eleusine indic aGaertin., Cyperns serotinus Rottb, Cyperns difformis L. showed slight infection but most of broadleaf weeds were resistant to bacterial leaf blight. 2. Weed species showing early susceptibility maintained their susceptibility throughout the growth stages. Group I of bacterial leaf blight was the most effective to develop infection symptom to weeds. 3. Pin and scissor inoculation methods were more effective mean for infection than spray method which was used without wound.

  • PDF

Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process (초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Won, Byoung- Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • In this study, micro- and submicron particles of itraconazole, a poorly water-soluble antifungal drug, were prepared for improving its aqueous solubility using an ultrasound-assisted supercritical fluid technique, called SAS-EM. The SAS-EM process used in our experiments was different from the conventional SAS-EM in that the ultrasound was applied directly to the spray nozzle. The effect of the ultrasonic power, temperature, and solvent on the formation of itraconazole particles were investigated. Smaller particles were obtained through our SAS-EM process compared with the ASES process, and the mean particle size decreased as the ultrasonic power increased. Our experimental results confirmed that the ultrasound-assisted supercritical fluid process is an efficient method for producing ultrafine particles.

Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers (시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능)

  • Kim, Yun-Yong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • This paper summarizes the design procedure and constructibility of an ECC (Engineered Cementitious Composite), which is a synthetic fiber-reinforced composite produced with the Portland cement-based mortar matrix. This study employs a stepwise method to develop useful ECC in construction field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). To control the rheological properties of the composite, the aggregates and reinforcing fibers were initially selected based on micromechanical analysis and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Incorporation of amoxicillin-loaded microspheres in mineral trioxide aggregate cement: an in vitro study

  • Fabio Rocha Bohns;Vicente Castelo Branco Leitune;Isadora Martini Garcia;Bruna Genari;Nelio Bairros Dornelles Junior;Silvia Staniscuaski Guterres;Fabricio Aulo Ogliari;Mary Anne Sampaio de Melo;Fabricio Mezzomo Collares
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.50.1-50.11
    • /
    • 2020
  • Objectives: In this study, we investigated the potential of amoxicillin-loaded polymeric microspheres to be delivered to tooth root infection sites via a bioactive reparative cement. Materials and Methods: Amoxicillin-loaded microspheres were synthesized by a spray-dray method and incorporated at 2.5% and 5% into a mineral trioxide aggregate cement clinically used to induce a mineralized barrier at the root tip of young permanent teeth with incomplete root development and necrotic pulp. The formulations were modified in liquid:powder ratios and in composition by the microspheres. The optimized formulations were evaluated in vitro for physical and mechanical eligibility. The morphology of microspheres was observed under scanning electron microscopy. Results: The optimized cement formulation containing microspheres at 5% exhibited a delayed-release response and maintained its fundamental functional properties. When mixed with amoxicillin-loaded microspheres, the setting times of both test materials significantly increased. The diametral tensile strength of cement containing microspheres at 5% was similar to control. However, phytic acid had no effect on this outcome (p > 0.05). When mixed with modified liquid:powder ratio, the setting time was significantly longer than that original liquid:powder ratio (p < 0.05). Conclusions: Lack of optimal concentrations of antibiotics at anatomical sites of the dental tissues is a hallmark of recurrent endodontic infections. Therefore, targeting the controlled release of broad-spectrum antibiotics may improve the therapeutic outcomes of current treatments. Overall, these results indicate that the carry of amoxicillin by microspheres could provide an alternative strategy for the local delivery of antibiotics for the management of tooth infections.

A Study on the Performance of Surface UV Printing Device for Power Indicator Production (파워인덕터 생산용 표면 UV 인쇄장치 성능 연구)

  • Hyun-Mu Lee;So-Mi An;Sung-Min Ahn;Jeong-Hwan Seo;Byoung-Jo Jung;Sung-Lin Kang
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • Research on power inductor surface UV printing equipment using cylindrical magnets can prevent damage to quality consumable materials (making plates, Squeegees) during printing and improve printing quality by applying technology to prevent product from flipping or standing up when fixing the product by making the magnetic formation of cylindrical magnets form up and down. The development of cylindrical magnets that changed the direction of magnetic force will stabilize the fixing method for metal products made by powder compression, increasing the production capacity for small products. Finally, by studying the power inductor surface UV printing device using cylindrical magnets, it can be differentiated from the spray and deeping methods that were being worked on, production will be greatly improved, and as a result, cost reduction and competitive production will be possible.