DOI QR코드

DOI QR Code

Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries

리튬이차전지용 음극활물질로서 Micro sized Silicon/CNT/Carbon 복합입자의 전기화학적 특성

  • Shin, Min-Seon (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Lee, Tae-Min (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Lee, Sung-Man (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • 신민선 (강원대학교신소재공학과) ;
  • 이태민 (강원대학교신소재공학과) ;
  • 이성만 (강원대학교신소재공학과)
  • Received : 2019.07.13
  • Accepted : 2019.08.12
  • Published : 2019.08.31

Abstract

In this study, silicon / carbon nanotube / carbon composite particles with high capacity were fabricated by using micro-sized silicon particles and carbon nanotubes as an anode material for lithium ion batteries. The silicon / carbon nanotube / carbon composite particles were prepared by spray drying method to prepare spherical composite particles. The composite particles have the network structure of the carbon nanotubes around the silicon particles, in which the silicon particles and the carbon nanotubes are bonded by amorphous carbon. It appears that the volume expansion of silicon is effectively buffered and the electrical contact is maintained in the network structure of the composite particles during charge-discharge cycles.

본 연구에서는 마이크로 크기의 실리콘 입자와 탄소나노튜브를 활용하여 고용량을 갖는 실리콘/탄소나노튜브/탄소 복합입자를 제조하여 리튬이차전지용 음극활물질로서의 적용가능성을 확인하고자 하였다. 실리콘/탄소나노튜브/탄소 복합입자 제조를 위해 분무건조 방식을 이용하여 실리콘입자가 탄소나노튜브에 의해 균일하게 분산되어 비정질탄소로 결합된 구조를 갖는 구형의 복합입자를 제조하였다. 제조한 복합입자는 실리콘 입자 주변에 탄소나노튜브의 네트워크 구조를 형성하며 비정질 탄소에 의해 실리콘 입자와 탄소나노튜브의 입자들이 결합한 상태를 유지하는 구조로 이루어진다. 이러한 복합입자의 구조적인 특성으로 인해 계속적인 충방전 과정에서 실리콘의 부피팽창이 효과적으로 완충되고 이에 따라 전기적 접촉 손실 및 SEI 막 형성에 따른 비가역 반응이 제어되어 우수한 수명 특성 및 충전출력 특성을 갖는 것으로 나타난다.

Keywords

References

  1. Sato, K., Noguchi, M., Demachi, A., Oki, N., Endo, E., 'A Mechanism of Lithium Storage in Disordered Carbons' Science, 264, 556 (1994). https://doi.org/10.1126/science.264.5158.556
  2. Dahn, J. R., Zheng, T.; Liu, Y. H.; Xue, J. S., 'Mechanisms for Lithium Insertion in Carbonaceous Materials' Science, 270, 590 (1995). https://doi.org/10.1126/science.270.5236.590
  3. Yazami, R., 'Surface Chemistry and Lithium Storage capability of the Graphite- Lithium Electrode' Electrochimica Acta, 45, 87 (1999). https://doi.org/10.1016/S0013-4686(99)00195-4
  4. K.M. Abraham, 'Prospects and Limits of Energy Storage in Batteries' J. Phys. Chem. Lett. 830-844 (2015).
  5. Hee-chul Jung, Young-Ugk Kim, Min-Seok Sung, Yoon Hwa, Goojin Jeong, Geun-Bae Kim and Hun-Joon Sohn, 'Nanosize Si anode embedded in super-elastic nitinol (Ni-Ti) shape memory alloy matrix for Li rechargeable batteries' J. Mater. Chem., 21, 11213-11216 (2011). https://doi.org/10.1039/c1jm11020a
  6. L.J. Chen, 'Graphene filled polymer nanocomposites' Journal of materials, 57, No, 9, 24-31 (2004).
  7. Namhyung Kim, Sujong Chae, Jiyoung Ma, Minseong Ko and Jaephil Cho, 'Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes' Nature Communications, 8, 812 (2017). https://doi.org/10.1038/s41467-017-00973-y
  8. Xiang Han, Huixin Chen, Ziqi Zhang, Donglin Huang, Jianfang Xu, Cheng Li, Songyan Chen and Yong Yang, 'Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode' J. Mater. Chem. A, 4, 17757 (2016). https://doi.org/10.1039/C6TA07274G
  9. Maziar Ashuri, Qianran He and Leon L. Shaw, 'Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter' Nanoscale, 8, 74 (2016). https://doi.org/10.1039/C5NR05116A
  10. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, 'High-performance lithium-ion anodes using a hierarchical bottom-up approach' Nature materials, 9, 353-358 (2010). https://doi.org/10.1038/nmat2725
  11. Nian Liu, Zhenda Lu, Jie Zhao, Matthew T. McDowell, Hyun-Wook Lee, Wenting Zhao and Yi Cui, 'A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.' Nature Nanotechnology, 9, 187-192 (2014). https://doi.org/10.1038/nnano.2014.6
  12. Yuzhang Li, Kai Yan, Hyun-Wook Lee, Zhenda Lu, Nian Liu and Yi Cui, 'Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes' nature energy, 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
  13. Byeongyong Lee, Tianyuan Liu, Sun Kyung Kim, Hankwon Chang, Kwangsup Eom, Lixin Xie, Shuo Chen, Hee Dong Jang, Seung Woo Lee, 'Submicron silicon encapsulated with grapheme and carbon as a scalable anode for lithium-ion batteries' Carbon 119, 438-445 (2017). https://doi.org/10.1016/j.carbon.2017.04.065
  14. Ji-Su Yun, Boyun Jang, Sung-Soo Kim, and Hyang-Yeon Kim, 'Electrochemical Properties of SiOx Anodes with Conductive Agents for Li Ion Batteries' J. Korean Inst. Electr. Electron. Mater. Eng., 32, 3, 179-186 (2019). https://doi.org/10.4313/JKEM.2019.32.3.179
  15. Hui Wu, Yi Cui, 'Designing nanostructured Si anodes for high energy lithium ion batteries' Nano Today, 7, 414-429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004
  16. Magali Gauthier, Driss Mazouzi, David Reyter, Bernard Lestriez, Philippe Moreau, Dominique Guyomard and Lionel Rou, 'A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries' Energy Environ. Sci., 6, (2013).
  17. Taeho Yoon, Cao Cuong Nguyen, Daniel M. Seo, Brett L. Lucht, 'Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries' J. Electrochemical Society, 162, 12, A2325-A2330 (2015). https://doi.org/10.1149/2.0731512jes
  18. E. Barsoukov, J.H. Kim, C.H. Yoon, H. Lee, 'Effect of Low-Temperature Conditions on Passive Layer Growth on Li Intercalation Materials In Situ Impedance Study' J. Electrochem. Soc., 145, 2711-2717 (1998). https://doi.org/10.1149/1.1838703
  19. T. Piao, S.M. Park, C.H. Doh, S.I. Moon, 'Intercalation of Lithium Ions into Graphite Electrodes Studied by AC Impedance Measurements' J. Electrochem. Soc., 146, 2794-2798 (1999). https://doi.org/10.1149/1.1392010
  20. J.Guo, A. Sun, X.Chen, C.Wang, A.Manivannan, 'Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy' Electrochimica Acta., 56, 3981-3987 (2011). https://doi.org/10.1016/j.electacta.2011.02.014