Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.3.112

Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries  

Shin, Min-Seon (Department of Advanced Materials Science and Engineering, Kangwon National University)
Lee, Tae-Min (Department of Advanced Materials Science and Engineering, Kangwon National University)
Lee, Sung-Man (Department of Advanced Materials Science and Engineering, Kangwon National University)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.3, 2019 , pp. 112-121 More about this Journal
Abstract
In this study, silicon / carbon nanotube / carbon composite particles with high capacity were fabricated by using micro-sized silicon particles and carbon nanotubes as an anode material for lithium ion batteries. The silicon / carbon nanotube / carbon composite particles were prepared by spray drying method to prepare spherical composite particles. The composite particles have the network structure of the carbon nanotubes around the silicon particles, in which the silicon particles and the carbon nanotubes are bonded by amorphous carbon. It appears that the volume expansion of silicon is effectively buffered and the electrical contact is maintained in the network structure of the composite particles during charge-discharge cycles.
Keywords
Micro-Sized Si; Carbon Nanotube; High Capacity; Anode Materials; Li-Ion Batteries;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Maziar Ashuri, Qianran He and Leon L. Shaw, 'Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter' Nanoscale, 8, 74 (2016).   DOI
2 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, 'High-performance lithium-ion anodes using a hierarchical bottom-up approach' Nature materials, 9, 353-358 (2010).   DOI
3 Nian Liu, Zhenda Lu, Jie Zhao, Matthew T. McDowell, Hyun-Wook Lee, Wenting Zhao and Yi Cui, 'A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.' Nature Nanotechnology, 9, 187-192 (2014).   DOI
4 Yuzhang Li, Kai Yan, Hyun-Wook Lee, Zhenda Lu, Nian Liu and Yi Cui, 'Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes' nature energy, 1, 15029 (2016).   DOI
5 Byeongyong Lee, Tianyuan Liu, Sun Kyung Kim, Hankwon Chang, Kwangsup Eom, Lixin Xie, Shuo Chen, Hee Dong Jang, Seung Woo Lee, 'Submicron silicon encapsulated with grapheme and carbon as a scalable anode for lithium-ion batteries' Carbon 119, 438-445 (2017).   DOI
6 Ji-Su Yun, Boyun Jang, Sung-Soo Kim, and Hyang-Yeon Kim, 'Electrochemical Properties of SiOx Anodes with Conductive Agents for Li Ion Batteries' J. Korean Inst. Electr. Electron. Mater. Eng., 32, 3, 179-186 (2019).   DOI
7 Hui Wu, Yi Cui, 'Designing nanostructured Si anodes for high energy lithium ion batteries' Nano Today, 7, 414-429 (2012).   DOI
8 Magali Gauthier, Driss Mazouzi, David Reyter, Bernard Lestriez, Philippe Moreau, Dominique Guyomard and Lionel Rou, 'A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries' Energy Environ. Sci., 6, (2013).
9 Sato, K., Noguchi, M., Demachi, A., Oki, N., Endo, E., 'A Mechanism of Lithium Storage in Disordered Carbons' Science, 264, 556 (1994).   DOI
10 Dahn, J. R., Zheng, T.; Liu, Y. H.; Xue, J. S., 'Mechanisms for Lithium Insertion in Carbonaceous Materials' Science, 270, 590 (1995).   DOI
11 Yazami, R., 'Surface Chemistry and Lithium Storage capability of the Graphite- Lithium Electrode' Electrochimica Acta, 45, 87 (1999).   DOI
12 K.M. Abraham, 'Prospects and Limits of Energy Storage in Batteries' J. Phys. Chem. Lett. 830-844 (2015).
13 Hee-chul Jung, Young-Ugk Kim, Min-Seok Sung, Yoon Hwa, Goojin Jeong, Geun-Bae Kim and Hun-Joon Sohn, 'Nanosize Si anode embedded in super-elastic nitinol (Ni-Ti) shape memory alloy matrix for Li rechargeable batteries' J. Mater. Chem., 21, 11213-11216 (2011).   DOI
14 L.J. Chen, 'Graphene filled polymer nanocomposites' Journal of materials, 57, No, 9, 24-31 (2004).
15 Namhyung Kim, Sujong Chae, Jiyoung Ma, Minseong Ko and Jaephil Cho, 'Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes' Nature Communications, 8, 812 (2017).   DOI
16 E. Barsoukov, J.H. Kim, C.H. Yoon, H. Lee, 'Effect of Low-Temperature Conditions on Passive Layer Growth on Li Intercalation Materials In Situ Impedance Study' J. Electrochem. Soc., 145, 2711-2717 (1998).   DOI
17 T. Piao, S.M. Park, C.H. Doh, S.I. Moon, 'Intercalation of Lithium Ions into Graphite Electrodes Studied by AC Impedance Measurements' J. Electrochem. Soc., 146, 2794-2798 (1999).   DOI
18 J.Guo, A. Sun, X.Chen, C.Wang, A.Manivannan, 'Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy' Electrochimica Acta., 56, 3981-3987 (2011).   DOI
19 Xiang Han, Huixin Chen, Ziqi Zhang, Donglin Huang, Jianfang Xu, Cheng Li, Songyan Chen and Yong Yang, 'Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode' J. Mater. Chem. A, 4, 17757 (2016).   DOI
20 Taeho Yoon, Cao Cuong Nguyen, Daniel M. Seo, Brett L. Lucht, 'Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries' J. Electrochemical Society, 162, 12, A2325-A2330 (2015).   DOI