• Title/Summary/Keyword: Split-Algorithm

Search Result 316, Processing Time 0.027 seconds

Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining (LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상)

  • Park, Seong-Chul;Kim, Jun-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.23-36
    • /
    • 2009
  • Network intrusion detection have been continuously improved by using data mining techniques. There are two kinds of methods in intrusion detection using data mining-supervised learning with class label and unsupervised learning without class label. In this paper we have studied the way of improving network intrusion detection accuracy by using LBG clustering algorithm which is one of unsupervised learning methods. The K-means method, that starts with random initial centroids and performs clustering based on the Euclidean distance, is vulnerable to noisy data and outliers. The nonuniform binary split algorithm uses binary decomposition without assigning initial values, and it is relatively fast. In this paper we applied the EM(Expectation Maximization) based LBG algorithm that incorporates the strength of two algorithms to intrusion detection. The experimental results using the KDD cup dataset showed that the accuracy of detection can be improved by using the LBG algorithm.

  • PDF

Multi-Dimensional Dynamic Programming Algorithm for Input Lot Formation in a Semiconductor Wafer Fabrication Facility (반도체 팹에서의 투입 로트 구성을 위한 다차원 동적계획 알고리듬)

  • Bang, June-Young;Lim, Seung-Kil;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • This study focuses on the formation of input release lots in a semiconductor wafer fabrication facility. After the order-lot pegging process assigns lots in the fab to orders and calculates the required quantity of wafers for each product type to meet customers' orders, the decisions on the formation of input release lots should be made to minimize the production costs of the release lots. Since the number of lots being processed in the wafer fab directly is related to the productivity of the wafer fab, the input lot formation is crucial process to reduce the production costs as well as to improve the efficiency of the wafer fab. Here, the input lot formation occurs before every shift begins in the semiconductor wafer fab. When input quantities (of wafers) for product types are given from results of the order-lot pegging process, lots to be released into the wafer fab should be formed satisfying the lot size requirements. Here, the production cost of a homogeneous lot of the same type of product is less than that of a heterogeneous lot that will be split into the number of lots according to their product types after passing the branch point during the wafer fabrication process. Also, more production cost occurs if a lot becomes more heterogeneous. We developed a multi-dimensional dynamic programming algorithm for the input lot formation problem and showed how to apply the algorithm to solve the problem optimally with an example problem instance. It is necessary to reduce the number of states at each stage in the DP algorithm for practical use. Also, we can apply the proposed DP algorithm together with lot release rules such as CONWIP and UNIFORM.

A Fast TU Size Decision Method for HEVC RQT Coding

  • Wu, Jinfu;Guo, Baolong;Yan, Yunyi;Hou, Jie;Zhao, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2271-2288
    • /
    • 2015
  • The emerging high efficiency video coding (HEVC) standard adopts the quadtree-structured transform unit (TU) in the residual quadtree (RQT) coding. Each TU allows to be split into four equal sub-TUs recursively. The RQT coding is performed for all the possible transform depth levels to achieve the highest coding efficiency, but it requires a very high computational complexity for HEVC encoders. In order to reduce the computational complexity requested by the RQT coding, in this paper, we propose a fast TU size decision method incorporating an adaptive maximum transform depth determination (AMTD) algorithm and a full check skipping - early termination (FCS-ET) algorithm. Because the optimal transform depth level is highly content-dependent, it is not necessary to perform the RQT coding at all transform depth levels. By the AMTD algorithm, the maximum transform depth level is determined for current treeblock to skip those transform depth levels rarely used by its spatially adjacent treeblocks. Additionally, the FCS-ET algorithm is introduced to exploit the correlations of transform depth level between four sub-CUs generated by one coding unit (CU) quadtree partitioning. Experimental results demonstrate that the proposed overall algorithm significantly reduces on average 21% computational complexity while maintaining almost the same rate distortion (RD) performance as the HEVC test model reference software, HM 13.0.

An Optimized User Behavior Prediction Model Using Genetic Algorithm On Mobile Web Structure

  • Hussan, M.I. Thariq;Kalaavathi, B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1963-1978
    • /
    • 2015
  • With the advancement of mobile web environments, identification and analysis of the user behavior play a significant role and remains a challenging task to implement with variations observed in the model. This paper presents an efficient method for mining optimized user behavior prediction model using genetic algorithm on mobile web structure. The framework of optimized user behavior prediction model integrates the temporary and permanent register information and is stored immediately in the form of integrated logs which have higher precision and minimize the time for determining user behavior. Then by applying the temporal characteristics, suitable time interval table is obtained by segmenting the logs. The suitable time interval table that split the huge data logs is obtained using genetic algorithm. Existing cluster based temporal mobile sequential arrangement provide efficiency without bringing down the accuracy but compromise precision during the prediction of user behavior. To efficiently discover the mobile users' behavior, prediction model is associated with region and requested services, a method called optimized user behavior Prediction Model using Genetic Algorithm (PM-GA) on mobile web structure is introduced. This paper also provides a technique called MAA during the increase in the number of models related to the region and requested services are observed. Based on our analysis, we content that PM-GA provides improved performance in terms of precision, number of mobile models generated, execution time and increasing the prediction accuracy. Experiments are conducted with different parameter on real dataset in mobile web environment. Analytical and empirical result offers an efficient and effective mining and prediction of user behavior prediction model on mobile web structure.

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF

A Study on the Robust Sound Localization System Using Subband Filter Bank (서브밴드 필터 뱅크를 이용한 강인한 음원 추적시스템에 대한 연구)

  • 박규식;박재현;온승엽;오상헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.36-42
    • /
    • 2001
  • This paper propose new sound localization algorithm that detects the sound source bearing in a closed office environment using two microphone array. The proposed Subband CPSP (Cross Power Spectrum Phase) algorithm is a development of previously Down CPSP method using subband approach. It first split the received microphone signals into subbands and then calculates subband CPSP which result in possible source bearings. This type of algorithm, Subband CPSP, can provide more robust and reliable sound localization system because it limits the effects of environmental noise within each subband. To verify the performance of the proposed Subband CPSP algorithm, a real time simulation was conducted and it was compared with previous CPSP method. From the simulation results, the proposed Subband CPSP is superior to previous CPSP algorithm more than 5% average accuracy for sound source detection.

  • PDF

Nonlinear Process Modeling Using Hard Partition-based Inference System (Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링)

  • Park, Keon-Jun;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.151-158
    • /
    • 2014
  • In this paper, we introduce an inference system using hard scatter partition method and model the nonlinear process. To do this, we use the hard scatter partition method that partition the input space in the scatter form with the value of the membership degree of 0 or 1. The proposed method is implemented by C-Means clustering algorithm. and is used for the initial center values by means of binary split. by applying the LBG algorithm to compensate for shortcomings in the sensitive initial center value. Hard-scatter-partitioned input space forms the rules in the rule-based system modeling. The premise parameters of the rules are determined by membership matrix by means of C-Means clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. The data widely used in nonlinear process is used to model the nonlinear process and evaluate the characteristics of nonlinear process.

Algorithm for Extract Region of Interest Using Fast Binary Image Processing (고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.634-640
    • /
    • 2018
  • In this paper, we propose an automatic extraction algorithm of region of interest(ROI) based on medical x-ray images. The proposed algorithm uses segmentation, feature extraction, and reference image matching to detect lesion sites in the input image. The extracted region is searched for matching lesion images in the reference DB, and the matched results are automatically extracted using the Kalman filter based fitness feedback. The proposed algorithm is extracts the contour of the left hand image for extract growth plate based on the left x-ray input image. It creates a candidate region using multi scale Hessian-matrix based sessionization. As a result, the proposed algorithm was able to split rapidly in 0.02 seconds during the ROI segmentation phase, also when extracting ROI based on segmented image 0.53, the reinforcement phase was able to perform very accurate image segmentation in 0.49 seconds.

Algorithm to prevent Block Discontinuity by Overlapped Block and Manning Window (중첩 기반 연산과 Hanning Window를 이용한 블록 불연속 노이즈 방지 알고리즘)

  • Kim, Joo-Hyun;Jang, Won-Woo;Park, Jung-Hwan;Yang, Hoon-Gee;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1650-1657
    • /
    • 2007
  • In this paper, we propose an Overlapped Block and an Hanning Window to prevent a Block Discontinuity when we use an algorithm to eliminate ringing artifact which is based on a block structure. The algorithm to eliminate ringing artifact operates with a block structure and 24-RGB data and is based on a modified K-means algorithm. The proposed overlapped block method is piled up one on another per an half of the size of unit-block when an input image is split into several unit-blocks. Therefore, we define a data unit as the unit-block of the block size, $16{\times}16$ pixels. We reconstruct the processed data units into the original form of input image by using an isotropic form of Hanning Window. Finally, in order to evaluate the performance of the abovementioned algorithms, we compare three image, an input image with ringing artifact, an image result obtained by conventional method (non-overlapped), and an image result obtained the proposed method.

Verification Algorithm for the Duplicate Verification Data with Multiple Verifiers and Multiple Verification Challenges

  • Xu, Guangwei;Lai, Miaolin;Feng, Xiangyang;Huang, Qiubo;Luo, Xin;Li, Li;Li, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.558-579
    • /
    • 2021
  • The cloud storage provides flexible data storage services for data owners to remotely outsource their data, and reduces data storage operations and management costs for data owners. These outsourced data bring data security concerns to the data owner due to malicious deletion or corruption by the cloud service provider. Data integrity verification is an important way to check outsourced data integrity. However, the existing data verification schemes only consider the case that a verifier launches multiple data verification challenges, and neglect the verification overhead of multiple data verification challenges launched by multiple verifiers at a similar time. In this case, the duplicate data in multiple challenges are verified repeatedly so that verification resources are consumed in vain. We propose a duplicate data verification algorithm based on multiple verifiers and multiple challenges to reduce the verification overhead. The algorithm dynamically schedules the multiple verifiers' challenges based on verification time and the frequent itemsets of duplicate verification data in challenge sets by applying FP-Growth algorithm, and computes the batch proofs of frequent itemsets. Then the challenges are split into two parts, i.e., duplicate data and unique data according to the results of data extraction. Finally, the proofs of duplicate data and unique data are computed and combined to generate a complete proof of every original challenge. Theoretical analysis and experiment evaluation show that the algorithm reduces the verification cost and ensures the correctness of the data integrity verification by flexible batch data verification.