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Abstract 
 

The cloud storage provides flexible data storage services for data owners to remotely outsource 

their data, and reduces data storage operations and management costs for data owners. These 
outsourced data bring data security concerns to the data owner due to malicious deletion or 

corruption by the cloud service provider. Data integrity verification is an important way to 

check outsourced data integrity. However, the existing data verification schemes only consider 

the case that a verifier launches multiple data verification challenges, and neglect the 

verification overhead of multiple data verification challenges launched by multiple verifiers at 

a similar time. In this case, the duplicate data in multiple challenges are verified repeatedly so 

that verification resources are consumed in vain. We propose a duplicate data verification 

algorithm based on multiple verifiers and multiple challenges to reduce the verification 

overhead. The algorithm dynamically schedules the multiple verifiers’ challenges based on 

verification time and the frequent itemsets of duplicate verification data in challenge sets by 

applying FP-Growth algorithm, and computes the batch proofs of frequent itemsets. Then the 

challenges are split into two parts, i.e., duplicate data and unique data according to the results 

of data extraction. Finally, the proofs of duplicate data and unique data are computed and 

combined to generate a complete proof of every original challenge. Theoretical analysis and 

experiment evaluation show that the algorithm reduces the verification cost and ensures the 

correctness of the data integrity verification by flexible batch data verification. 
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 1. Introduction  

With the rapid development of the cloud computing, cloud storage as a new generation of 

computing infrastructure has received more and more attention. It is a distributed computing 

model for sharing virtualized computing resources, such as storage, CPU, applications and 

services. Cloud computing brings many benefits to users, and users' demand for cloud storage 

services is also increasing. Some recent reports indicate that more than 79% of organizations 

need to use data outsourcing, the demand for cloud storage services is increasing [1-3]. Cloud 

computing is attractive as a cost-effective and high-performance model. However, the 

trustworthiness and reliability of cloud infrastructure has increasingly aroused people's 

concern, the outsourced data or the cloud infrastructure often encounters security issues [4-6]. 

Cloud computing appears as a black-box to the users, which is beneficial to cloud service 

providers (CSP) for management and security purposes. Unfortunately, the black-box nature 

introduces the lack of transparency for CSP’s activities, which results in distrust and lack of 

accountability of clouds [7]. In result, data owners worry about whether outsourced data is 

intact or corrupted on remote storage  servers because they are deprived of direct control over 

the data [8-10]. In order to solve these problems, many solutions on the data integrity 

verification have been proposed to verify the integrity of remote data storage [3-16]. 

Some of existing data integrity verification schemes introduce third-party verifier (TPA)  

to execute the fair and professional verification of data stored in cloud storage space [13-20]. 

However, it's very hard to seek a completely credible third-party verifier in practice.  Although 

the data owner who publishes the data sharing service in the cloud has 

the responsibilities and obligations to ensure the integrity of shared data for the data users, the 

fairness of the verification executed by the data owner is questioned since the verification 

results provided by third party verifier is more convincing. Facing such a difficult situation, 

Mauro et al. [12] proposed an idea to verify the data integrity in the data sharing service.  In 

the context of data sharing service scenario, the cloud service provider provides a way for the 

data owner, e.g., most companies or individuals, to store their data into the cloud, such as 

computer software, data documents, and so on. Users authorized by the data owner can 

download these data over the Internet. Certainly, before a user downloads the data over the 

Internet, he is very concerned about whether the data has been corrupted or tampered, 

otherwise, he will waste the transmission cost in vain. Thus, the integrity of the data is very 

important for the user so that he will perform the data integrity verification in person before 

downloading the data [12].  In this case, the users are both the users of data and the verifier of 

data since each users is a third party independent of  the data owner and the cloud service 

provider. However, since many users often download the same data in cloud data sharing 

service at a similar time, e.g., hot data, it causes high data verification overhead for the cloud 

service provider in a short time. Moreover, the existing verification schemes only consider that 

one or more verification requests are launched by one TPA [13-20]. In order to provide data 

sharing services for users, the data owner needs to rent the service resources from the cloud 

and bear the rental cost accordingly. Therefore, when multiple verifiers launch multiple data 

verification requests for the same data at a similar time, multiple challenges with the same data 

require CSP to repeatedly calculate the data proofs and tag proofs of the same checked data. 

The duplicate verification data not only increase the unnecessary verification overhead, but 

also put a burden on the data owner and the cloud service provider. In particular, data owner 

cares about computational cost consumed during the verification, since data verification is not 

free for the verifiers and CSP, and the bills for data proofs and tag proofs computed by CSP 

during the verification process will be paid by the data owner. To reduce the verification cost, 
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this paper proposes a verification scheme for the duplicate verification data with multiple 

verifiers and multiple verification challenges. Our main contributions are summarized as 

follows: 

1) We propose a data verification algorithm for multiple verifiers and multiple verification 

challenges (MT-DVA) to reduce the unnecessary overhead caused by duplicate data 

verification. Considering that the role of TPA will be assumed by the data users, TPA refers 

to the users in the following paper. The algorithm dynamically schedules the challenge set 

according to the deadline of the challenges requested by TPA. Then it restructures the 

verification tasks according to the same verification data object.  

2) We use the FP-Growth algorithm to extract the frequent itemsets from different 

challenge data sets. Then, each original challenge data set is split according to frequent 

itemsets which are extracted before, where the data proof and tag proof of duplicate parts and 

that of different parts are calculated respectively.  

3) We combine the duplicate part and different part according to the original challenge data 

sets which are requested by different TPAs. The verification proof including data proofs and 

tag proofs will be formed, and then is used by the verification model to verify the integrity of 

the data. 

The rest of this paper is organized as follows. In Section 2, we briefly summarize the current 

research on data integrity verification. Section 3 outlines the system model and problem 

statement. In Section 4, we present a verification algorithm for the duplicate verification data 

with multiple TPAs and multiple verification challenges. In Section 5, we analyze our scheme. 

Section 6 evaluates the performance of the proposed algorithm. Finally, Section 7 gives the 

conclusions of the work and future directions. 

2. Related Work 

At present, the integrity verification schemes for remote storage data can be divided into two 

types, i.e., provable data possession (PDP) [13] and proof of retrievability (POR) [17]. 

1) Data verification scheme 

The data integrity is recently focusing on the remote data storage. Since Ateniese et al. [13] 

and Shacham et al. [17] proposed the provable data possession (PDP) and the proof of 

retrievability (POR), respectively, many verification schemes based on the two main 

mechanisms are improved to guide the current data integrity verification. Without doubt, the 

two types of verification schemes have one thing in common that POR can be implemented 

by integrating the PDP and the data recovery technology. 

Erway et al. [14] proposed a PDP scheme of a rank-based skip list to support the data 

dynamic operation. Shacham and Waters [15] used the BLS short message signature 

mechanism [16] to construct a verification tag based on homomorphic encryption technology, 

which proved to be safe in a strong threat environment. Yu et al. [10] proposed a new 

construction of identity-based RDIC protocol by making use of key-homomorphic 

cryptographic primitive to reduce the system complexity and the cost for establishing and 

managing the public key authentication framework in PKI-based RDIC schemes. Yang et al. 

[20] proposed a public auditing protocol for shared cloud data to support identity privacy and 

identity traceability. 

The integrity verification schemes above will cost a lot of computation overhead. Although 

the verification proof is generated by the cloud server, the resource cost on the cloud server is 

not free. The more resource the verification uses, the more expensive bill the data owner will 
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receive. If a large number of users download the shared data on the CSP, the verification cost 

is also expensive. In particular, when multiple users challenging the same data at a similar 

time, the cloud server cannot but calculate the proof again and again, even though there exists 

same part in different challenges. However, these algorithms only consider that one TPA 

challenges the integrity of the data on the cloud server. 

2) Execution of the data verification 

In the cloud data integrity verification, [13] used the method of randomly extracting data 

blocks, and CSP calculated the proof once a challenge arrived. To increase efficiency and 

achieve the scalability of public auditing, TPA should handle multiple audit requests from 

different users in a fast and cost-effective way, which supports batch auditing [21-23]. Hao 

Yan et al. [24] mentioned in the scheme that TPA selects two random numbers 𝑘1 and 𝑘2 in 

data verification and sends them to the cloud server. Then CSP generates a challenge set C 

according to 𝑘1, 𝑘2. In [25], since the index number of the data block at the random position 

of each spot check is fixed in advance, and the hash value is calculated by cascading the data 

blocks, the fast positioning and repair of the data cannot be supported. 

The above schemes only deal with one or more verification requests launched by one TPA. 

In contrast to the above solutions, in this paper, we design a data verification algorithm for 

multiple verifiers and multiple verification requests (i.e., multi-batch data). While the same 

data are extracted by different verifiers in a certain period of time, the same part of verified 

data is only calculated once. 

3. System Model and Problem Statement 

3.1 System Model 

In the data storage service, a traditional verification model [14] is generally composed of the 

data owner (DO), the cloud service provider (CSP), and the third party verifier (TPA) who 

refers to the user in this paper. As shown in Fig. 1, DO rents CSP’s resources to publish his 

data as a service for users. Users must verify the data integrity before downloading or using 

the shared data. Otherwise, Once the downloaded data have been corrupted, users will waste 

their precious network resources in vain. Moreover, as CSP’s computation resources are not 

free, the data verification cost is borne by the data owner. The process of data integrity 

verification is mainly composed of five polynomial algorithms as follows. 

1) 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆) → (𝑠𝑘, 𝑝𝑘). The data owner enters the security parameter λ, and then 

executes a probabilistic key generation algorithm to generate one public key 𝑝𝑘 and 

one private key 𝑠𝑘. 

2) 𝑇𝑎𝑔𝐺𝑒𝑛(𝐹, 𝑠𝑘) → 𝑇. The data owner divides the file F into n data blocks. Then he 

uses the private key 𝑠𝑘 to calculate the corresponding data tag 𝑡𝑖 for each data block. 

Finally, he uploads the file 𝐹and one tag set 𝑇 = {𝑡𝑖}𝑖∈[1,𝑛] to CSP. 

3) 𝐶ℎ𝑎𝑙𝑙(𝐹) → 𝐶. TPA randomly selects the index numbers of 𝑐(𝑐 ≤ 𝑛) verified data 

blocks and puts them into set. Based on this, TPA generates a corresponding random 

number 𝑣𝑖 in ℤ𝑝 for each data block, and then forms a challenge 𝐶 = {(𝑖, 𝑣𝑖)𝑖∈[1,n]}. 

TPA finally outputs the challenge 𝐶 to CSP. 

4) 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, 𝑇, 𝐶) → 𝑃. The CSP responds to the challenge and uses 𝑐 extracted 

data blocks and corresponding data tags stored in his own storage space, and the 

challenge 𝐶 to calculate the verification proof 𝑃. Finally, 𝑃 is returned to the TPA. 
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5) 𝑉𝑒𝑟𝑖𝑓𝑦𝐷𝑎𝑡𝑎(𝐶, 𝑃, 𝑝𝑘, 𝑇) → 0/1. The TPA uses the received verification proof 𝑃, 

the public key 𝑝𝑘, the challenge 𝐶 to determine the integrity of the challenged data 

blocks, and outputs whether these data blocks are intact or not. 

User(TPA)

CSP

Data Owner

Challenge

Proof

Verification Requirement

Accecpt Verification 

Requirement

4

5
Upload File 

and Data Tags1
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Verification Cost
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Fig. 1.  Data Integrity Verification Model 

 

3.2 Motivation 

In traditional verification scheme, after CSP receives the challenges 𝐶1 and 𝐶2 from TPA1 and 

TPA2, he will execute 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, 𝑇, 𝐶1) and 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, 𝑇, 𝐶2) in order. As shown in 

Fig. 2(a), the proofs of 10 data blocks and 12 data blocks are generate for the challenge 𝐶1 and 

the challenge 𝐶2 respectively. Assume that the time of generating the proof for one block is 𝑡. 

The time of executing 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, 𝑇, 𝐶1)  and 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, 𝑇, 𝐶2)  is 10 𝑡  and 12 𝑡 
respectively. The total time of the proof generation for the challenges 𝐶1and 𝐶2 is 22𝑡. In Fig. 

2(a), there are the same verification data in the challenges 𝐶1 and 𝐶2 (shaded data blocks in 

Fig. 2). The part of same data blocks 𝐶𝐴  is first extracted, and their proof is calculated 

separately. Then the part of the different data blocks 𝐶1
′, namely the rest part that 𝐶1 removes 

𝐶𝐴, is also calculated separately. The part 𝐶2
′ which is the rest part of 𝐶2 removing 𝐶𝐴 is also 

calculated separately. After all these are done, 𝐶𝐴 and 𝐶1
′ are combined together to form the 

original challenge 𝐶1 . Also 𝐶𝐴 and 𝐶2
′  are combined into 𝐶2 . Finally, the proof 𝑃1 

corresponding to 𝐶1 and the proof 𝑃2 corresponding to C2 are gotten respectively. In this way, 

the total calculation time is shorten to only 17𝑡, which is 5𝑡 less than the traditional verification 

schemes. When the number of TPAs is large or the same verification data are large,  CSP needs 

to repeatedly calculate the duplicate data in their challenges to generate the data proofs and 

tag proofs, leading to wasting the computational resources. 

Therefore, the authors consider extracting the same verification data from different 

challenges and compute them separately so that the duplicate data are only calculated once, as 

shown in Fig. 2(b). After extracting the duplicate data, the CSP usually calculates the proof of 

22 data blocks, and now only calculates the proof for 17 data blocks. Therefore, if the duplicate 

data in multiple challenges are dealt with properly under certain conditions, the verification 

cost can be reduced obviously. 
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(a) Traditional schemes 

 

(b) Splitting the challenged data by the same and different data blocks 

Fig. 2.  Proof Generation 

3.3 Problem Statement 

In the system model and motivation described above, when multiple TPAs challenge the 

integrity of multiple verification data at a similar time, the verification needs to confront 

and overcome the following problems. 

1) The duplicate verification data which are in the multiple verification challenges 

results in unnecessary verification overhead.  

2) The correctness of the proof of different challenges must be ensured after these 

challenges are split into different parts and each proof is generated for each part 

separately.  

In this paper, our goal is to propose an efficient data verification algorithm to solve the 

above problems, and reduce the verification cost.  

4. Verification Algorithm for the Duplicate Verification Data with Multiple 
Verifiers and Multiple Verification Challenges 

Since each challenge has a release time, one challenge data set is equivalent to the data set in 

the task. Let each challenge be each task. Therefore, referring to the definition of the task [26-

30], we define each challenge 𝐶𝑗 (𝑗 ∈ [1, 𝑚]) as follows. 

Definition 1. Challenge 𝐶𝑗. After a TPA generating challenge data set 𝛺𝑗 = {(𝑗, 𝑣𝑗)
𝑗∈[1,𝑚]

}, 

he constructs the challenge 𝐶𝑗 = {𝑟𝑗, 𝑑𝑗 , 𝛺𝑗}, where 𝑟𝑗 is the release time of 𝐶𝑗, and 𝑑𝑗 is the 

deadline of 𝐶𝑗.  

Definition 2. Challenge Set. When one or multiple users launch multiple challenges, a 

challenge set 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑚}  is constructed, where 𝑚  is the total number of the 

challenges. 
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As described above, CSP may receive a large number of challenges in a certain period of 

time, and simultaneously there are parts of the same challenge data among these challenges. 

In this paper, we first dynamically classify the challenge set according to the deadline of 

challenges to decide whether there exist the duplicate data in multiple challenges. Then we 

extract the frequent itemsets from the classified challenge set to construct a new set, and 

calculate these set separately. Finally, we combine the new set into the original challenges, 

and generate the final proof 𝑃𝑗 and send it to the corresponding TPA. Our algorithm separately 

computes the duplicate challenge data requested by different TPAs to reduce the verification 

overhead. 

4.1 Possibility of Duplication Data Occurring in Multiple Challenges 

In data integrity verification, when multiple TPAs send multiple challenges to CSP, we 

dynamically schedule the challenges in a certain period of time, and then extract the duplicate 

data in these challenges. 

Suppose there are 𝑛 data blocks stored by the CSP. During the time interval ∆𝑡, the CSP 

receives 𝑚 challenges, and the number of indexes in the challenge 𝐶𝑗 is 𝑛𝑢𝑚𝐶𝑗
. If 𝑛𝑢𝑚C𝑗

∙

𝑚 > 𝑛 , it must have 𝐶𝑥 ∩ 𝐶𝑦 ≠ ∅, where 𝑥, 𝑦 ∈ [1, 𝑚]. That is, the same data blocks are 

verified twice. If 𝑛𝑢𝑚C𝑗
∙ 𝑚 > 𝑛 , let event 𝐴  denote the challenges  existing 

the duplicate indexes. The probability of the occurrence of the event 𝐴 is 

 

𝑃(𝐴) = 1 − 𝑃(𝐴̅) = 1 −

∏ 𝐶
𝑛−∑ 𝑛𝑢𝑚𝐶𝑗

𝑚
𝑗=1

𝑛𝑢𝑚𝐶𝑗𝑚
𝑗=1

∏ 𝐶𝑛

𝑛𝑢𝑚𝐶𝑗𝑚
𝑗=1

= 1 −
𝐴𝑐−𝑛𝑢𝑚𝐶1

𝑛−∑ 𝑛𝑢𝑚𝐶𝑗
𝑚
𝑗=1

𝐴𝑛

𝑛𝑢𝑚𝐶2 ×⋯×𝐴𝑚

𝑛𝑢𝑚𝐶𝑚
.            (1) 

 

If 𝑛𝑢𝑚𝐶𝑗
∙ 𝑚 ≪ 𝑛 , we can increase m by extending the time interval ∆t. Thus, the 

probability P(A) of the event A can be increased. 

Definition 3. Computation time of challenge. Suppose a challenge has 𝑎1 data block 

indexes and its calculation time of proof generation is 𝐶𝑝(𝑎1). In addition, another challenge 

with 𝑎2 data block indexes has the calculation time of proof generation is 𝐶𝑝(𝑎2). Therefore, 

if the challenge 𝐶𝑗 has 𝑏 data block indexes, the calculation time of proof generation for the 

challenge 𝐶𝑝 is 

 

𝐶𝑝(𝐶𝑗) = 𝑏 × 𝛽𝑝 + 𝜖𝑝,                                                       (2) 

 

where 𝛽𝑝 =
𝐶𝑝(𝑎1)−𝐶𝑝(𝑎2)

𝑎1−𝑎2
，𝜖𝑝 =

𝑎1𝐶𝑝(𝑎2)−𝑎2𝐶𝑝(𝑎1)

𝑎1−𝑎2
. 

 

Definition 4. The latest execution time of challenge. Suppose that the challenge 𝐶𝑗 has 𝑏 

data block indexes, then the latest execution time of the challenge 𝐶𝑗 is  

 

𝑆𝑗
′ = 𝑑𝑗 − 𝐶𝑝(C𝑗).                                                           (3) 

 

Assume that TPA launches a challenge 𝐶𝑗 at time 𝑡𝑗, CSP calculates the latest execution 

time 𝑆𝑗
′ for 𝐶𝑗. If 𝑆𝑗

′ = 𝑡, CSP generates the proof of challenge 𝐶𝑗 immediately, where 𝑡 is the 

current time. If 𝑆𝑗
′ > 𝑡, 𝐶𝑗 will be added to challenge set 𝐶 and wait for more challenges to 
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arrive between time 𝑡𝑗 and 𝑡. For each challenge C𝑗 we will repeat this process. If the number 

of challenges satisfies 𝑚C > 𝑚′ before 𝑡, we will sort each challenge C𝑗 in 𝐶 according to the 

latest execution time 𝑆𝑗
′, where 𝑚𝐶 is the number of challenges in 𝐶 and 𝑚′ is its threshold. 

Then we further deal with the data set in each challenge 𝐶𝑗. Otherwise, if 𝑚C < 𝑚′, the proof 

of 𝐶𝑗 is directly calculated according to 𝑆𝑗
′ without other operations. 

4.2 Extraction of the Duplicate Verification Data in Multiple Challenges 

Assume there exists the duplicate verification data in the challenge set 𝐶. Then, the frequent 

itemsets of the duplicate verification data are extracted, and are sorted according to the order 

of the original challenge 𝐶𝑗. 

1) Frequent itemset computation 

Given the challenge set 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑚} that meets the requirements in Section 4.1. To 

extract duplicate data block indexes, we use the FP-Growth algorithm [18] to mine frequent 

itemsets in the challenge set.  

Set a minimum support 𝜉, and build an FP tree for all index values in Ω𝑗, where Ω𝑗 is the 

verified data set in the challenge 𝐶𝑗 .Assume that there exists the same challenge index ℎ 

between two different data sets Ω1 and Ω2. The random number corresponding to the index in 

Ω1 cannot be equal to that in Ω2. Therefore, when constructing the FP tree according to the 

index in the challenge, it is necessary to store the random number 𝑣𝑖 of the index which is 

duplicate in more than one challenge, where 𝑣𝑖 is the corresponding random number of the 

index in set Ω1. In the process of recursively mining the new frequent itemsets, if a new 

frequent item is already in the frequent itemsets, it would be deleted. Otherwise, the new 

frequent item is added to the frequent itemsets. We finally get 𝑑 frequent itemsets Ω̅𝑘
′

 (𝑘 ∈

[1, 𝑑]), and form 𝑑 new challenges for Ω̅𝑘
′
.  

2) Sorting frequent itemsets 

As we sort each challenge 𝐶𝑗 in the challenge set 𝐶, we also sort 𝑑 frequent itemsets Ω̅𝑘
′
 

similarly according to the latest execution time of their corresponding challenges. For example, 

given Ω1, Ω2, and Ω3, and there exit two frequent itemsets Ω̅1 and Ω̅2 among Ω1, Ω2, and Ω3. 

Supposed that Ω̅1 ⊆ Ω1, Ω̅1 ⊆ Ω3, Ω̅2 ⊆ Ω2, and 𝑆1
′ < 𝑆2

′ < 𝑆3
′ . As 𝑆1

′ < 𝑆2
′ , the deadline of 

Ω1 is closer. When calculating the proof of each item in the frequent itemsets, we first calculate 

Ω̅1 and then  Ω̅2. 

4.3 Split of Verification Data and Challenge Proof 

After extracting the frequent itemsets from the challenges, we split each original challenge 

into duplicate data set and rest data set according to extracted frequent itemsets. Then we 

compute the proofs of the two data sets respectively. 

4.3.1 Verification Data Split based on Frequent Itemsets 

We split the data set Ω𝑗  in each challenge 𝐶𝑗 into two sets, i.e., Ω𝑗 = Ω𝑗
′ + Ω̅𝑘

′
, where 

Ω̅𝑘
′

 (Ω̅𝑘
′

⊆ Ω𝑗) is the duplicate data set, and Ω𝑖
′  is the rest data set. The index number of 

frequent itemsets of Ω̅𝑘
′

 is stored as 𝐼𝑛𝑑𝑒𝑥
Ω̅𝑘

′  corresponding to Ω̅𝑘
′

 through the array. The 

detailed process of challenge split is shown in Fig. 3. First, the CSP forms a challenge queue 

for all challenges sent by the TPA in the 𝐶ℎ𝑎𝑙𝑙(∙). Next, the CSP extracts frequent itemsets in 

challenge set, and generates new challenges (i.e., 𝐶𝐴 and 𝐶𝐵) for each set in frequent itemsets. 
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Finally, the challenges 𝐶𝐴 and 𝐶𝐵 are added to the challenge queue, and the challenges 𝐶𝐴 and 

𝐶𝐵 are executed first.  

 

 
Fig. 3.  Challenge Split 

4.3.2 Proof Generation 

For each set in the frequent itemsets Ω̅𝑘
′
, the CSP first calculates the data proof 𝐷𝑃

Ω̅𝑘
′  by 

 

𝐷𝑃
Ω̅𝑘

′ = 𝑒(𝑢, 𝑝𝑘)
∑ (𝐵𝑘∙

∑ 𝑣𝑘
𝑛𝑢𝑚𝑉𝑘

)𝑑
𝑘=1

,                                       (4) 

 

    Where 𝐵𝑘 is the data block, and 𝑛𝑢𝑚𝑉𝑘
 is the number of elements 𝑣𝑘. Then, for each set 

Ω̅𝑘
′

, CSP computes tag proof 𝑇𝑃
Ω̅𝑘

′ by 

 

𝑇𝑃
Ω̅𝑘

′ = ∏ 𝜎𝑘

∑ 𝑣𝑘
𝑛𝑢𝑚𝑉𝑘

𝑘∈[1,𝑑] .                                                  (5) 

 

    After CSP completes the proof computation of frequent itemset Ω̅𝑘
′
, the data proof and the 

proof of frequent items are computed. The data proof 𝐷𝑃𝛺𝒋
′ of Ω𝑗

′  is  

 

DP
Ω𝒋

′ = 𝑒(𝑢, 𝑝𝑘)
∑ 𝐵𝑗𝑣𝑗𝑗∈Ω𝒋

′

,                                              (6) 

 

and the tag proof 𝑇𝑃
Ω𝒋

′  is 

 

TP
Ω𝒋

′ = ∏ 𝜎
𝑗

𝑣𝑗

𝑗∈Ω𝒋
′ .                                                        (7) 
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4.4 Combination of Verification Data and Verification Proof in Each Challenge 

After computing the verification proofs of the duplicate data and the rest data, we recombine 

the duplicate data and the rest data into the original data set Ω𝑗 . Also, we recombine the 

verification proofs of the duplicate data and the rest data into the verification proof 𝑃𝑗 of the 

challenge 𝐶𝑗. 

4.4.1 Combination of Verification Data 

We first combine the challenges together the deadline of which is closed to each other. As 

shown in Fig. 4, when we combine the challenge data set Ω𝑗 , we find the set in frequent 

itemsets by the index 𝐼𝑛𝑑𝑒𝑥𝛺̅𝒌
′ . In this way, we can combine Ω𝑗

′  and Ω̅𝒌
′
 into original challenge 

data set Ω𝑗. 

 

 
Fig. 4.  Challenge Data Combination 

4.4.2 Combination of Verification Proof 

After combining the verification data, we find the index of frequent itemsets of Ω𝑗 in 𝐼𝑛𝑑𝑒𝑥𝛺̅𝒌
′  

to get the data proof and tag proof of corresponding frequent itemsets. After that, CSP 

computes the data proof 𝐷𝑃𝛺̅𝒌
′  of 𝛺̅𝑘

′  by 

 

𝐷𝑃𝛺̅𝒌
′ = ∏ 𝐷𝑃𝛺̅𝑗𝛺̅𝑗∈𝛺̅𝒌

′ .                                                             (8) 

 

    CSP computes the tag proof 𝑇𝑃𝛺̅𝒌
′  of 𝛺̅𝑘

′  by 

 

𝑇𝑃𝛺̅𝒌
′ = ∏ 𝑇𝑃𝛺̅𝑗𝛺̅𝑗∈𝛺̅𝒌

′ .                                                             (9) 

 

    For each Ω𝑗, CSP computes the data proof 𝐷𝑃𝛺𝑗
 of Ω𝑖 by 

 

𝐷𝑃𝛺𝑗
= 𝐷𝑃𝛺𝒋

′ ∙ 𝐷𝑃𝛺̅𝒋
′,                                                           (10) 

 

and the tag proof 𝑇𝑃𝛺𝑗
 by 

 

𝑇𝑃𝛺𝑗
= 𝑇𝑃𝛺𝒋

′ ∙ 𝑇𝑃𝛺̅𝒋
′ .                                                           (11) 
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Finally, CSP returns the data integrity proof 𝑃𝑗 = (𝐷𝑃𝛺𝑗
, 𝑇𝑃𝛺𝑗

) and the set of random 

number 𝑉
Ω̅𝒌

′ . 

4.4.3 Proof Check 

After the TPA receives the data integrity proof 𝑃𝑗 and the random number set 𝑉Ω̅𝒌
′ sent by the 

CSP, TPA verifies the proof by  

 

𝐷𝑃𝛺𝑗
∙ 𝑒(∏ 𝐻(𝐵𝑖𝑑)𝑣𝑗

𝑗∈𝛺𝒋
′ ∙ ∏ 𝐻(𝐵𝑖𝑑)

∑ 𝑣𝑘
𝑛𝑢𝑚𝑉𝑘

𝑘∈𝛺̅𝒌
′ , 𝑝𝑘) = 𝑒(𝑇𝑃𝛺𝑗

, 𝑔),             (12) 

 

where 𝐵𝑖𝑑 is the identity of the data block 𝐵𝑖. If the above formula holds, the outsourced data 

in CSP’s storage space are intact; otherwise, the data are corrupted. 

4.5 Verification Algorithm for the Duplicate Verification Data with Multiple 
Verifiers and Multiple Challenges 

The proposed algorithm not only verifies the outsourced data integrity, but also reduces the 

unnecessary verification overhead caused by the duplicate data. In this paper, we improve 

𝐶h𝑎𝑙𝑙𝐺𝑒𝑛(𝐹), 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, Φ, 𝐶𝑗), and 𝑉𝑒𝑟𝑖𝑓𝑦(𝛺𝑗, 𝑃𝑗).  

1） 𝐶h𝑎𝑙𝑙𝐺𝑒𝑛(𝐹) → Ω𝑗 . TPA  selects c data blocks in the data file 𝐹  to launch a 

challenge, and generates Ω𝑗 = {(𝑗, 𝑣𝑗)} . Then TPA outputs the challenge C𝑗 =

{𝑟𝑗, 𝑑𝑗 , Ω𝑗} to CSP. 

2） 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹, Φ, 𝐶𝑗) → (P𝑗) . CSP computes the latest execution time 𝑆𝑗
′ of the 

challenge 𝐶𝑗 according to formula (3). If the number of the challenges satisfies 𝑚C >

𝑚′ before 𝑡, we sort the items in challenge set 𝐶 according to 𝑆𝑗
′, computing 𝐶𝑖 with 

a closer 𝑆𝑗
′ first. CSP extracts the challenge data set Ω𝑗 in 𝐶𝑗, performs the extraction 

of the duplicate verification data, splits and combines the verification data to get the 

verification proof 𝑃𝑗. CSP returns 𝑃𝑗 to TPA.  

3） 𝑉𝑒𝑟𝑖𝑓𝑦(𝛺𝑗 , 𝑃𝑗) → (𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒). After TPA receives 𝑃𝑗 , he verifies the proof by 

checking (12). If the data are intact, it outputs true, otherwise it outputs false.  

 

Algorithm 1 shows the detailed process of the proof generation. 

 

Algorithm 1 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(∙) 

 Input: Challenge 𝐶𝑗, file F, file tags 𝑇 

 Output: Proof 𝑃𝑗 

1. if 𝑆𝑗
′ > 𝑡 then 

2. 𝐶 ← 𝐶𝑗; 

3. else 

4.      generate P𝑗 ; 

5.      return P𝑗; 

6. end if  

7. compute △ 𝑡; 

8. Sort(Ω); 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 2, February 2021                          569 

 

9. if 𝑚𝐶 > 𝑚′ then 

10. Ω → Ω̅; 

11.      Sort(Ω̅); 

12.      if Ω̅ ≠ ∅ then 

13.          for j=1 to m do 

14. 𝐷𝑃𝛺̅𝑗
= 𝑒(𝑢, 𝑝𝑘)

∑ (𝐵𝑗∙
∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝑉𝑗

)𝑗∈𝛺̅𝑗
; 

15. 𝑇𝑃Ω̅𝑗
= ∏ 𝜎

𝑗

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝑉𝑗
𝑗∈Ω̅𝑗

; 

16.          endfor 

17.     endif 

18. endif 

19. for Ω𝑗 in Ω do 

20. Ω𝑗 = Ω̅𝑘
′

+ Ω𝑗
′ ; 

21. 𝐷𝑃𝛺̅𝑗
′ = ∏ 𝐷𝑃𝛺̅𝑗𝛺̅𝑗∈𝛺̅𝑗

′  and 𝑇𝑃𝛺̅𝑗
′ = ∏ 𝑇𝑃𝛺̅𝑗𝛺̅𝑖∈𝛺̅𝑗

′ ; 

22. 𝐷𝑃𝛺𝑗
= 𝐷𝑃𝛺𝑗

′ ∙ 𝐷𝑃𝛺̅𝑗
′ , and 𝑇𝑃𝛺𝑗

= 𝑇𝑃𝛺𝑗
′ ∙ 𝑇𝑃𝛺̅𝑗

′ ; 

23. 𝑃𝑗 = {𝐷𝑃𝛺𝑗
, 𝑇𝑃𝛺𝑗

}; 

24. endfor 

25. return 𝑃𝑗; 

 

In Algorithm 1, lines 1-6 is to generate challenge set 𝐶. The CSP calculates 𝑆𝑗
′ according 

to  (3), and adds the challenge 𝐶𝑗 to the challenge set 𝐶 while 𝑆𝑗
′ > 𝑡; if 𝑆𝑗

′ = 𝑡, the proof 𝑃𝑗 of 

the challenge 𝐶𝑗  is directly calculated. In lines 7-9, for challenge set 𝐶 , if the number of 

challenges satisfies 𝑚𝑐 > 𝑚′ before 𝑡, the CSP extracts Ω̅ according to Section 4.2. After that, 

the CSP sorts the elements in Ω̅. In lines 10-19, if there exist frequent itemsets, the CSP will 

split and combine the challenges according to Section 4.3 and Section 4.4 to get 𝑃𝑗. Finally, 

the proof 𝑃𝑗 is sent to the TPA. 

5. Algorithm Analysis 

Definition 5. Computational Diffie-Hellman (CDH) problem. If 𝑔, 𝑔𝑎, and 𝑔𝑏 are known, it 

is computationally infeasible to calculate 𝑔𝑎𝑏 with unknown 𝑎, 𝑏 ∈ 𝑍𝑝. 

5.1 Correctness of Algorithm 

The data proof without challenge split 𝐷𝑃𝛺𝑗
= 𝑒(𝑢, 𝑝𝑘)

∑ 𝑚𝑗𝑣𝑗𝑗∈𝛺𝑗  and the tag proof 𝑇𝑃𝛺𝑗
=

∏ 𝜎
𝑗

𝑣𝑗
𝑗∈𝛺𝒋

 can be checked by   

 

𝐷𝑃𝛺𝑗
∙ 𝑒 (∏ 𝐻(𝐵𝑖𝑑)𝑣𝑗

𝑗∈𝛺𝒋
, 𝑝𝑘) = 𝑒 (𝑇𝑃𝛺𝑗

, 𝑔).                                   (13) 
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The data proof of a challenge has been split and combined by 

 

𝐷𝑃𝛺𝑗
= 𝐷𝑃𝛺𝒋

′ ∙ 𝐷𝑃𝛺̅𝒋
′ = 𝑒(𝑢, 𝑝𝑘)

∑ 𝐵𝑗𝑣𝑗𝑗∈𝛺𝒋
′

∙ ∏ 𝑒(𝑢, 𝑝𝑘)
∑ (𝑚𝑗∙

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝑉𝑗

)𝑗∈𝛺̅𝑗

𝛺̅𝑗∈𝛺̅𝒋
′

= 𝑒(𝑢, 𝑝𝑘)
∑ 𝐵𝑗𝑣𝑗𝑗∈𝛺𝒋

+∑ ∑ (𝐵𝑗∙
(∑ 𝑢𝑗𝑢𝑗∈𝑉𝑗

)−𝑣𝑗𝑛𝑢𝑚𝑉𝑗

𝑛𝑢𝑚𝑉𝑗

)𝑗∈𝛺̅𝑗𝛺̅𝑗∈𝛺̅𝒋
′

= 𝑒(𝑢, 𝑝𝑘)
∑ 𝐵𝑗𝑣𝑗𝑗∈𝛺𝒋 ∙ 𝑒(𝑢, 𝑝𝑘)

∑ ∑ (𝐵𝑗∙
(∑ 𝑢𝑗𝑢𝑗∈𝑉𝑗

)−𝑣𝑗𝑛𝑢𝑚𝑉𝑗

𝑛𝑢𝑚𝑉𝑗

)𝑗∈𝛺̅𝑗𝛺̅𝑗∈𝛺̅𝒋
′

. 
 

    Since the operations are exponential operations, the data proof of the challenge data set Ω𝑗 

can be obtained by multiplying the duplicate data set and the rest data set. The data proof of a 

challenge that has been split can be converted from the data proof that has not been split. The 

tag proof after the challenge split is computed by 

 

TPΩ𝑗
= TP

Ω𝒋
′ ∙ TP

Ω̅𝒋
′ = ∏ 𝜎

𝑗

𝑣𝑗

𝑗∈Ω𝒋
′

∙ ∏ ∏ 𝜎
𝑗

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝑉𝑗

𝑗∈Ω̅𝑗Ω̅𝑗∈Ω̅𝒋
′

 

= ∏ 𝜎
𝑗

𝑣𝑗

𝑗∈Ω𝒋

∙ ∏ ∏ 𝜎
𝑗

(∑ 𝑢𝑗𝑢𝑗∈𝑉𝑗
)−𝑣𝑗𝑛𝑢𝑚𝑉𝑗

𝑛𝑢𝑚𝑉𝑗 .

𝑗∈Ω̅𝑗Ω̅𝑗∈Ω̅𝒋
′

 

 

We can judge the correctness of the proposed algorithm by verifying the correctness of the 

verification (12). The proof of the verification is given by 

 

𝑙𝑒𝑓𝑡 =  𝐷𝑃𝛺𝑗
∙ 𝑒 (∏ 𝐻(𝐵𝑖𝑑)𝑣𝑗

𝑗∈𝛺𝒋
′

∙ ∏ 𝐻(𝐵𝑖𝑑)

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚
𝛺̅𝒋

′

𝑗∈𝛺̅𝒋
′

, 𝑝𝑘) 

          = ∏ 𝑒(𝑢, 𝑝𝑘)
∑ (𝐵𝑗∙

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝛺̅𝑗

)𝑗∈𝛺̅𝑗

𝑗∈Ω̅𝒋
′

∙ 𝑒(𝑢, 𝑝𝑘)
∑ 𝐵𝑗𝑣𝑗𝑗∈Ω𝒋

′

∙ e (∏ 𝐻(𝐵𝑖𝑑)𝑣𝑗

𝑗∈Ω𝒋
′

∙ ∏ 𝐻(𝐵𝑖𝑑)

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝛺̅𝑗

𝑗∈Ω̅𝒋
′

, 𝑝𝑘) 

= 𝑒 (𝑢
∑ (∑ (𝐵𝑗∙

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝛺̅𝑗

)𝑗∈𝛺̅𝑗
)

𝑗∈Ω̅𝒋
′

∙ 𝑢
∑ 𝐵𝑗𝑣𝑗𝑗∈Ω𝒋

′

∙ ∏ 𝐻(𝐵𝑖𝑑)𝑣𝑖

𝑖∈Ω𝒊
′

∙ ∏ 𝐻(𝐵𝑖𝑑)

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝛺̅𝑗 ,

𝑗∈Ω̅𝒋
′

𝑝𝑘) 

= 𝑒 (𝑢
∑ (∑ (𝐵𝑗∙

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝛺̅𝑗

)𝑗∈𝛺̅𝑗
)

𝑗∈Ω̅𝒋
′

∙ ∏ 𝐻(𝐵𝑖𝑑)

∑ 𝑣𝑗𝑣𝑗∈𝑉𝑗

𝑛𝑢𝑚𝛺̅𝑗

𝑗∈Ω̅𝒋
′

∙ ∏ 𝐻(𝐵𝑖𝑑)𝑣𝑗

𝑗∈𝛺𝑗

∙ 𝑢
∑ 𝑣𝑗𝐵𝑗𝑗∈𝛺𝑗 , 𝑔𝑎) 

= 𝑒(TP
Ω𝒋

′ ∙ TP
Ω̅𝒋

′ , 𝑔) = e(𝑇𝑃Ω𝑗
, 𝑔)  =  𝑟𝑖𝑔ℎ𝑡 
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According to the proof of the verification formula, homomorphism technology can be used 

to verify the integrity of data. In the verification, our algorithm uses the property of the bilinear 

pairing to generate an encrypted proof with the challenge stamp. Even though the TPA cannot 

decrypt it, he can verify the correctness of the proof without decrypting it. Based on Definition 

5, it is computationally infeasible to forge 𝐷𝑃𝛺𝑗
 and 𝑇𝑃𝛺𝑗

. Since the CSP cannot decrypt sk 

from pk in our algorithm, he also cannot forge or replace {𝐷𝑃𝛺𝑗
, 𝑇𝑃𝛺𝑗

} effectively and get the 

true results. In addition, when challenging the integrity of data, the TPA randomly generates 

the value 𝑣𝑗 for each challenge. The CSP cannot predict it or store the corresponding data 

proofs and tag proofs after calculating these data. Due to the randomness of the value of the 

challenge, the repetition rate of challenges in different verification is very small so that the 

verification can effectively resist the replay attack on the CSP. Only if the received challenge 

and the corresponding data blocks are used while the CSP generates the proofs, the verification 

can be passed. We can draw conclusion from the previous analysis that the proposed algorithm 

is correct. 

Based on the analysis above, the security of the data owner’s outsourced data can be 

guaranteed, and the proposed algorithm can effectively resist the forge attack, replace attack, 

and replay attack. 

5.2 Feasibility Analysis of Challenge Split 

The purpose of dynamically scheduling the challenge data set in the verification is to ensure 

that all challenges can be successfully completed before the deadline. Thus, the whole process 

of challenge scheduling should be optimized in terms of the deadline of each challenge and 

CSP’s dynamic resource allocation. Our algorithm ensures that every challenge can be 

successfully finished from three aspects.  

First, the enforceability of the challenge is evaluated. When the new challenge 𝐶𝑗  is 

released, the CSP calculates S𝑗
′  by applying Equation (3). If S𝑗

′ > 0, the challenge 𝐶𝑗 will be 

added to the challenge set 𝐶 for further operation. Otherwise, it will be executed directly and 

calculated to get the proof 𝑃𝑗.  

Second, the cost of the challenge split and computation overhead of combination of 

verification data and verification proof are evaluated. If the challenge 𝐶𝑗 has 𝑐 data blocks to 

be calculated, the calculation cost of proof for the traditional verification algorithms is equal 

to 𝐶𝑝(𝑐) by (1), and if there are m challenges now, the calculation cost of the proof is 𝑚 ∙

𝐶𝑝(𝑐). In this paper, when the duplicate rate of the challenge data set is high, the duplicate 

data among the challenges will not be calculated again. Suppose that the time of the frequent 

itemset extraction is 𝑇𝑓(𝑐). So the verification time cost of the algorithm is 𝑚 ∙ 𝐶𝑝(𝑐 − 𝑑) +

𝑇𝑓(𝑐). This will continue to be discussed in Section 5.3. 

Finally, whether the challenge can be completed on time after the split is evaluated. The 

completion time of the challenge 𝐶𝑗 depends on its execution time and deadline. Since the 

deadline is fixed, we can apply (3) to dynamically schedule the start time of the challenge. Let 

the current time be 𝑡, we have sorted each challenge 𝐶𝑗 in set 𝐶 by 𝑆𝑗
′ from small to large. Also, 

when 𝑡 = 𝑆𝑗
′, the challenge 𝐶𝑗 must start to generate the proof to ensure that challenge can be 

completed before the deadline. 

5.3 Computational Complexity 

The computational cost of the algorithm depends on the cost of proof generation, the cost of 

frequent itemset extraction, and the cost of the challenge split and combination. If there are 𝑚 
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challenges with c data blocks in each challenge now, the cost of proof generation for the 

traditional verification algorithms is 𝑚 ∙ 𝐶𝑝(𝑐). However,  for our scheme, the calculation time 

of (1) and (2) is negligible because they are simply algebraic operations. On the other hand, 

the verification cost of our algorithm mainly depends on the execution time of (3)-(10). 

Assume that each of the 𝑚  challenges has 𝑑  duplicate indexes of data blocks, and the 

extraction time of frequent itemsets is 𝑇𝑓(𝑐). The total computation cost is 𝑚 ∙ 𝐶𝑝(𝑐 − 𝑑) +

𝑇𝑓(𝑐). The cost of frequent itemset extraction mainly depends on the operation time of FP-

Growth. We will find in simulation that when the duplicate rate is less than 0.3%, the execution 

time of frequent itemset extraction is higher than the traditional schemes. As the larger d is, 

the smaller 𝐶𝑝(𝑐 − 𝑑) is. Therefore, it is more suitable to use MT-DVA while the number of 

duplicate indexes in the challenge set is large. 

6. Simulation 

In order to further evaluate the performance of the proposed algorithm, we rent the computing 

and storage resource of Alibaba cloud as the cloud service provider, and utilize a laptop which 

is equipped with Intel Core i5-4210M 2.60GHz dual-core processors and 4GB RAM to work 

as the data owner. For the cloud storage data of 40GB, let the length of each data block be 

320kB. The length of each element in group 𝐺 is 1,024 bits, and the length of each element in 

Z𝑝 is 160 bits. The algorithm is implemented based on the JPBC library and using Java. 

For ease of description and fairness, our algorithm is abbreviated as MT-DVA and 

compared with [13] (called PDP) and [30] (called DHT-PA). Each experiment is repeated 20 

times in the same environment and then averaged. The performance of these algorithms is 

compared in terms of the time of challenge set preprocessing, verification time, storage cost, 

and challenge loss rate. 

6.1 Computation Cost of Challenge Set Split and Combination 

For the proposed scheme, the CSP dynamically schedules the challenges according to their 

deadlines, and then extracts frequent itemsets, splits the challenge data, and combines the split 

verification data and proofs. All these operations cause external computational cost. The 

extraction of the frequent itemsets in the challenge data set is main time-consuming operation. 

So, we will evaluate the time of challenge set preprocessing, which includes dynamically 

scheduling challenges by their deadlines, extracting frequent itemsets, and splitting the 

challenge data. Let duplicate rate in the challenge be 𝛽 =
𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑎 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑎 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒
. We 

assume that 𝛽 = 20% in each challenge. Fig. 5 shows the execution time of the external steps 

of the proposed algorithm, when the number of TPAs is 10 and 20 respectively. As shown in 

Fig. 5, with the increasing number of data blocks in the challenge, the running time also 

increases. However, even if each challenge contains 50,000 indexes, the runtime which is 

4326ms is much less than the execution time of a challenge. 
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Fig. 5.  The Time of Challenges Preprocessing 

6.2 Verification Efficiency 

Fig. 6 shows the average verification time for one of 20 TPAs. When the duplicate rate is 

0.3%, the verification time of MT-DVA is higher than DHT-PA at the beginning. However, 

when the number of verification data blocks reaches 20,000, the average verification time of 

MT-DVA is 829.388s, and the average verification time of DHT-PA is 809.783s and PDP is 

815.621s. With the increasing of the number of verification data blocks, the verification time 

of MT-DVA is much less than DHT-PA. In Fig. 6, the curves of the PDP and DHT-PA almost 

coincide. The reason is that DHT-PA only performs the verification challenge sent by each 

TPA sequentially. DHT-PA is sometimes several tens of seconds faster than PDP, but it is not 

clearly visible in the figure. Moreover, when the challenge repetition rate is higher, the average 

verification time of MT-DVA for per TPA is shorter. In this paper, since we will batch generate 

the proofs of the duplicate data in challenge data set, it reduces the time of CSP repeatedly 

computing the proofs. 

 

 

Fig. 6.  The Time of Verification 
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6.3 Storage Overhead 

During verification data splitting, if the same index exists in the two challenge data sets, CSP 

needs to store the random numbers, leading to storage overhead increasing. We set the number 

of TPA is 20, and the duplicate rate is 20%. As the number of data blocks in the challenge data 

set increases, shown in Fig. 7, both the number of duplicate data blocks and the storage 

overhead also increase. In Fig. 7, the curve of PDP coincides with DHT-PA, because PDP and 

DHT-PA only need to store DP and TP, the storage size of which is almost the same. Although 

the storage overhead of MT-DVA is larger than PDP and DHT-PA, the storage overhead of 

the challenges, each of which contains 50,000 data blocks, is only 4680 KB. So, it is 

acceptable.  

 

 
Fig. 7.  Storage Cost of Challenge 

6.4 Challenge Loss Rate 

In the data verification process, the failure of the challenges should be avoided as much as 

possible. The main factor that causes the challenge failure is to miss the challenge deadline. 

The authors define the challenge loss rate as the ratio of the number of challenges missing 

deadline to the total number of challenges. The challenge loss rate is shown in Fig. 8. 

Obviously, DHT-PA and PDP both have a greater challenge loss rate. The main reason is that 

both DHT-PA and PDP do not schedule the challenges before the verification, so it is more 

likely to miss the deadline. For the proposed algorithm, we first execute the challenge of earlier 

deadline. At the same time, a challenge with a later deadline may have the same set of frequent 

items as the executed challenge before, so reducing the time of proof generation, and avoiding 

missing the deadline. 
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Fig. 8.  Challenge Loss Rate 

 

In summary, the proposed algorithm can batch compute the duplicate data in the challenges 

sent by different TPAs. Although the storage overhead is increased by a small amount, the 

computation load of CSP is greatly reduced while the duplicate rate is high or the number of 

data block is large. 

7. Conclusion 

Data integrity verification provides an important way to verify the integrity of outsourced data. 

In order to reduce the unnecessary overhead caused by duplicate data verification, this paper 

provides an optimized data verification algorithm for multiple verifiers and multiple 

verification challenges. The algorithm extracts frequent itemsets to split the challenges and 

sorts the challenges according to their deadline. This algorithm reduces the computation 

overhead of proof generation. In the future, we will further optimize the algorithm and reduce 

the cost by adjusting ∆𝑡. 
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