• Title/Summary/Keyword: Split Core

Search Result 65, Processing Time 0.022 seconds

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

Bone regeneration and graft material resorption in extraction sockets grafted with bioactive silica-calcium phosphate composite (SCPC) versus non-grafted sockets: clinical, radiographic, and histological findings

  • Adel-Khattab, Doaa;Afifi, Nermeen S.;el Sadat, Shaimaa M. Abu;Aboul-Fotouh, Mona N.;Tarek, Karim;Horowitz, Robert A.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.418-434
    • /
    • 2020
  • Purpose: The purpose of the present study was to evaluate the effect of silica-calcium phosphate composite (SCPC) granules on bone regeneration in extraction sockets. Methods: Ten patients were selected for a split-model study. In each patient, bone healing in SCPC-grafted and control ungrafted sockets was analyzed through clinical, radiographic, histomorphometric, and immunohistochemical assessments 6 months postoperatively. Results: A radiographic assessment using cone-beam computed tomography showed minimal ridge dimension changes in SCPC-grafted sockets, with 0.39 mm and 1.79 mm decreases in height and width, respectively. Core bone biopsy samples were obtained 6 months post-extraction during implant placement and analyzed. The average percent areas occupied by mature bone, woven bone, and remnant particles in the SCPC-grafted sockets were 41.3%±12%, 20.1%±9.5%, and 5.3%±4.4%, respectively. The percent areas of mature bone and woven bone formed in the control ungrafted sockets at the same time point were 31%±14% and 24.1%±9.4%, respectively. Histochemical and immunohistochemical analyses showed dense mineralized bundles of type I collagen with high osteopontin expression intensity in the grafted sockets. The newly formed bone was well vascularized, with numerous active osteoblasts, Haversian systems, and osteocytes indicating maturation. In contrast, the new bone in the control ungrafted sockets was immature, rich in type III collagen, and had a low osteocyte density. Conclusions: The resorption of SCPC granules in 6 months was coordinated with better new bone formation than was observed in untreated sockets. SCPC is a resorbable bone graft material that enhances bone formation and maturation through its stimulatory effect on bone cell function.

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber

  • Shen, Jianping;Zhang, Siwei;Wang, Wei;Li, Shuguang;Zhang, Song;Wang, Yujun
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.250-260
    • /
    • 2021
  • A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.

Understanding centrosome amplification in cancer: A pathway toward precision-targeted cancer drug development (암의 중심체 증폭 이해를 통한 표적 항암제 개발)

  • Taekyung Kim
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.950-955
    • /
    • 2023
  • Cell division is an essential process for the survival and development of living organisms. It is critical that duplicated chromosomes are properly segregated into daughter cells during mitosis. The centrosome is the core organelle that forms the microtubule-organizing center (MTOC), which generates the microtubules that make up the mitotic spindle during cell division. The centrosome is also involved in cell signaling and motility. In normal cells, there is one centrosome in G1 that replicates into two in the S phase and matures through G2. During the M phase, duplicated centrosomes move to both ends of the cell, and spindle microtubules that are generated from MTOC move the chromosome to both ends. The cells then split into two to complete the cell division. However, a phenomenon called centrosome amplification (CA), in which the number of centrosomes is higher than normal, is common in cancer cells and can lead to chromosome instability (CIN). This paper discusses the process of centrosome replication and the role of PLK4 in this process. The possible consequences of centrosome amplification and how the PLK4 inhibitor may be able to treat certain types of cancer cells, such as breast cancer and neuroblastoma, will also be discussed.

A Study of Reliability and Validity on the Korean Version of Social Adaptation Self Rating Scale(SASS) (한국어판 사회적응자기평가척도(SASS)의 신뢰도 및 타당도 연구)

  • Kim, Hyeong-Seob;Kim, Yong-Ku;Yoon, Choong-Han;Jeong, Han-Yong;Cheong, Young-Ki
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.8 no.2
    • /
    • pp.212-227
    • /
    • 2000
  • This study was designed to testify the reliability and validation on the Korean version of the Social Adaptation Self-rating Scale(SASS) which was developed from Bose et al. for the evaluation of social motivation and behavior of depressed patients in 1997. Interests for the social world, those of social functioning, of patients were involved in the addition of new measure of disturbance. And those were distinct from abnormalities of thought, mood and symptoms of patients with major depression. As the previous reports there were several evidences that treatments may be less likely to be effective if the system they act on is dysfunctional. Thus, a better social situation favoured better outcome. As a matter of fact, however, those reports were developed in the course of the evaluation of interpersonal therapy(IPT) and cognitive therapy. Accordingly the conversed question -whether pharmacological therapy with antidepressants can impact on social functioning in addition to addressing the core features of illness- has been addressed. To date, anyhow, it is accepted that enhancement of social functioning may be a therapeutic principle in its own right and illness rarely divorced from social context. In terms of those concepts the introduction of an assessment of social functioning into pharmacotherapeutic studies of depression has been welcomed and might be a potent instrument for evaluating the relative pharmacoeconomic benefits of different treatments. Despite of many scales which were applied for the evaluation of symptoms in the patients with depression, however, the scale for the evaluation of social functiong has not been introduced in Korea yet. Thus, this study was designed to introduce the concepts of social functioning in the patients with depression and to testify the reliability and validation on Korean version of SASS. This Korean version of SASS was submitted to a reliability and validation procedure based on the data from healthy general population survey in 291 individuals and 40 patients with major depression. Cronbach a was 0.790 in total subjects group and the correlation of test-retest was statistically significant(y=0.653, p<0.0l). Thus, the Korean version of SASS might be shown to be valid and reliable. The results of multivariate analyses allowed the identification of 3 principle factors(factor 1 = intersts in social activities, factor 2 = active interpersonal relationship, factor 3 = selfesteem) in normal group, however, it could be counted as only one factor in the depression group because nearly total items of SASS were involved in factor 1. In the view of these results, the Korean version of SASS may be useful additional tool for the evaluation of social functioning in depression.

  • PDF

Evaluating Various Nitrogen Sources for Divot Recovery on Creeping bentgrass (Creeping bentgrass의 생육과 디봇피해 회복을 위한 질소의 유형별 효과)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.135-139
    • /
    • 2012
  • Creeping bentgrass (Agrostis stolonifera) is one of the most popular turfgrasses for high-quality playing surface such as putting green on golf courses and athletic fields. Continues damage such as divot injury on creeping bentgrass is major issue to maintain golf course properly. Although plentiful researches to maximize divot resistance have been reported, minimal research has focused on relation between nitrogen (N) sources and divot resistance. The study was conducted to determine the effect of N source for turfgrass divot recovery and overall tee performance. Eleven fertilizer treatments as N sources were applied to creeping bentgrass 'Penncross'. Before the first application, divot injuries were simulated by removing a core of soil and turfgrass from established plots and backfilling with native soil. Data collection included turfgrass color and quality. N release speed did not influenced divot recovery. Frequency of urea application had no effects on divot recovery. Urea with split application had no difference with no treatment for divot recovery. Polyon product especially polyon mini (41-0-0) had the best performance for divot recovery and for maintaining better turfgrass quality. Overall, small particle size of slow-release N form would influence creeping bentgrasss to recover divot damage.

A Experimental Study on the Evaluation of Deteriorated Concrete Member Exposed One Side at High Temperature (고온에 일면 노출된 콘크리트부재의 손상깊이 평가를 위한 실험적 연구)

  • Lee, Joong-Won;Choi, Kwang-Ho;Hong, Kap-Pyo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.431-438
    • /
    • 2006
  • The determination of the depth of deteriorated concrete is one of the main problems in the structural assessment of concrete structures that have been subjected to a fire. This information is particularly important in order to optimize the future operations of repair/strengthening, or in decision-making concerning a possible demolition. The purpose of this study is to propose evaluation technique of damaged depth of concrete exposed at high temperature. In order to evaluate damaged depth of core picked at member under fire, the 24 specimens have been made with variables of concrete strength(20 MPa, 40 MPa, 60 MPa) and heating exposure condition in 600 and 800 for 2 hours. Color change analysis and water absorption after heating have been measured and split tensile stress test was performed to ka the residual compressive strength against the depth of specimen. The results show that the deeper of the depth from heating face, water absorption ratio is smaller and residual stress ratio is larger and the color of heated face is changed to red color. Using this technique at damage evaluation of fired structure, We evaluate damaged depth of member under fire and determine the reasonable strengthening range.

Video Segmentation Method using Improved Adaptive Threshold Algorithm and Post-processing (개선된 적응적 임계값 결정 알고리즘과 후처리 기법을 적용한 동영상 분할 방법)

  • Won, In-Su;Lee, Jun-Woo;Lim, Dae-Kyu;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.663-673
    • /
    • 2010
  • As a tool used for video maintenance, Video segmentation divides videos in hierarchical and structural manner. This technique can be considered as a core technique that can be applied commonly for various applications such as indexing, abstraction or retrieval. Conventional video segmentation used adaptive threshold to split video by calculating difference between consecutive frames and threshold value in window with fixed size. In this case, if the time difference between occurrences of cuts is less than the size of a window or there is much difference in neighbor feature, accurate detection is impossible. In this paper, Improved Adaptive threshold algorithm which enables determination of window size according to video format and reacts sensitively on change in neighbor feature is proposed to solve the problems above. Post-Processing method for decrement in error caused by camera flash and fast movement of large objects is applied. Evaluation result showed that there is 3.7% improvement in performance of detection compared to conventional method. In case of application of this method on modified video, the result showed 95.5% of reproducibility. Therefore, the proposed method is more accurated compared to conventional method and having reproducibility even in case of various modification of videos, it is applicable in various area as a video maintenance tool.

12-bit SAR A/D Converter with 6MSB sharing (상위 6비트를 공유하는 12 비트 SAR A/D 변환기)

  • Lee, Ho-Yong;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1012-1018
    • /
    • 2018
  • In this paper, CMOS SAR (Successive Approximation Register) A/D converter with 1.8V supply voltage is designed for IoT sensor processing. This paper proposes design of a 12-bit SAR A/D converter with two A / D converters in parallel to improve the sampling rate. A/D converter1 of the two A/D converters determines all the 12-bit bits, and another A/D converter2 uses the upper six bits of the other A/D converters to minimize power consumption and switching energy. Since the second A/D converter2 does not determine the upper 6 bits, the control circuits and SAR Logic are not needed and the area is minimized. In addition, the switching energy increases as the large capacitor capacity and the large voltage change in the C-DAC, and the second A/D converter does not determine the upper 6 bits, thereby reducing the switching energy. It is also possible to reduce the process variation in the C-DAC by proposed structure by the split capacitor capacity in the C-DAC equals the unit capacitor capacity. The proposed SAR A/D converter was designed using 0.18um CMOS process, and the supply voltage of 1.8V, the conversion speed of 10MS/s, and the Effective Number of Bit (ENOB) of 10.2 bits were measured. The area of core block is $600{\times}900um^2$, the total power consumption is $79.58{\mu}W$, and the FOM (Figure of Merit) is 6.716fJ / step.