• Title/Summary/Keyword: Sphingolipid

Search Result 56, Processing Time 0.03 seconds

Disruption of Sphingolipid Metabolism as a Potential Mechanism of Fumonisin Inhibition of Cell Growth in $LLC-PK_1$ Cells

  • Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Fumonisins are a family of mycotoxins produced by the fungus Fusarium moniliforme which is a common contaminant in corn. Fumonisins are potent inhibitors of sphingosine and sphinganine N-acyltransferase (ceramide synthase), key enzymes in sphingolipid metabolism. The purpose of this study was to provide the evidence that the elevated levels of free sphingoid bases (primarily sphinganine) and depletion of complex sphingolipids were closely related to the inhibition of cell growth in LLC-$PK_1$ cells exposed to fumonisin $B_1$$(\leq 35 {\mu}M)$. Concentrations of fumonisin $B_1$ between 10 and $35 {\mu}M$ were known to inhibit cell growth without cytotoxicity in $LLC-PK_1$ cells (Yoo et al. Toxicol. Appl. Pharmacol. 114, 9-15, 1992). Cells exposed to 35$\mu M$ fumonisin B$_1$ for 48 and 72 hr developed a fibroblast-like (elongated and spindle-shaped) appearance and were less confluent than normal cells. At between 24 and 48 hr after exposure to fumonisin $B_1$ cells were beginning to show the inhibition of cell growth and at 72 hr the number of viable cells in fumonisin-treated cultures was about 50% of concurrent control cultures. During the 24 hr lag period preceding inhibition of cell growth, the free sphinganine levels in cells exposed to $35 {\mu}M$ fumonisin $B_1$ were highly elevated (approximately 230 fold higher than normal cells). The elevated levels of free sphinganine were $435\pm14$$pmoles/{10^6}$ cells at 48 hr and approximately TEX>$333\pm11$$pmoles/{10^6}$ cells in cells exposed to $35{\mu}M$ fumonisin$B_1$ at 72 hr, while the levels of free sphinganine in normal cells were less than 2$pmoles/{10^6}$ cells. Under the same condition, depletion of intracellular complex sphingolipids as a consequence of fumonisin inhibition of de novo sphingolipid biosynthesis and turnover pathway was appeared. Content of free sphingold bases in dividing cells was more elevated than in confluent cells at 24-48 hr after cells were exposed to $20{\mu}M$ fumonisin $B_1$. The dividing cells were showing the inhibition of cell growth at 48-72 hr and $20{\mu}M$ fumonisin $B_1$. The results of this study support the hypothesis that the inhibition of cell growth is very well related to the disruption of sphingolipid metabolism in $LLC-PK_1$ cells.

  • PDF

Effects of Synthetic Pseudoceramides on Sphingosine Kinase Activity in F9-12 Cells

  • Jin, You-Xun;Shin, Kyong-Oh;Park, Myung-Yong;Lee, Shin-Hee;Park, Byeong-Deog;Oh, Sei-Kwan;Yoo, Hwan-Soo;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.134-139
    • /
    • 2011
  • Sphingosine kinase (SPHK) has a central role to control cell death and cell proliferation, which is suggested as a sphingolipid rheostat by regulating the levels between ceramide and sphingosine 1-phosphate (S1P). Therefore, physiological regulators of SPHK will be a good candidate to develop a new targeted drug. For this purpose, a series of synthetic pseudoceramides were tested by SPHK assay either cell-based or cell-free system. K10PC-5 strongly inhibited SPHK, while K6PC-5 activated SPHK in cell-free system. Specifically, K6PC-5 activated SPHK under the co-treatment with $50\;{\mu}M$ dimethylsphingosine (DMS), a SPHK inhibitor. Collectively, we developed a simple SPHK assay system to find SPHK regulatory pseudoceramide compounds, K10PC-5 and K6PC-5 which may be useful to cancer treatment or immune regulation like FTY720, a synthetic sphingolipid mimetic compound.

Activity Change of Sphingomyelin Catabolic Enzymes during Dimethylnitrosamine-induced Hepatic Fibrosis in Rats

  • Sacket, Santosh J.;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • Oxidative stress may represent a common link between chronic liver damage and hepatic fibrosis. In the present study, we investigated activity changes of sphingomyelin catabolic enzymes, such as sphingomyelinases and ceramidases by using dimethylnitrosamine (DMN)-treated Sprague-Dawley (SD) male rats hepatic fibrosis model as a hepatic fibrosis model. Twenty rats divided into five groups received: (1) saline; (2) DMN for 1 week, (3) DMN for 2 weeks, (4) DMN for 3 weeks, and (5) DMN for 4 weeks by intraperitoneally 10 mg/kg of body weight for three consecutive days a week. Activities of acidic and neutral sphingomyelinases and acidic, neutral and alkaline ceramidases were measured in the liver and kidney from DMN-treated rats. We found increased ceramidase activities from 2-week and/or 3-week DMN treated rat livers compared to control rat liver. Acidic sphingomyelinase and alkaline ceramidase activities were significantly increased in 3-week DMN-treated rat kidneys compared to control rat kidney. Therefore, sphingolipid metabolizing enzymes and sphingolipid metabolites are supposed to be involved in liver fibrosis, although further investigation is necessary to elucidate meanings of sphingolipids during the liver fibrosis

Isolation and Characterization of Major Glycosphingolipid from Rice Bran Extract (쌀겨 추출물로부터 스핑고당지질의 분리와 구조결정)

  • Mitsutake, Susumu;Okada, Tadashi;Kang, Byoung-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.72-76
    • /
    • 2007
  • In order to examine the biofunctions of glycosylceramide which is representative of sphingolipid, monoglycosylceramide (cerebroside) was isolated from rice bran extract. Crude glycosylceramides were isolated in large quantities and promptly by flash system column chromatography from rice bran extract, and purified by normal-phase HPLC using an evaporative light-scattering detector. One major cerebroside was obtained by HPLC used as an eluent consisting of chloroform, methanol and water (99:11:1, v/v/v), and the constituents were analyzed by MALDI/TOF-MS, FAB-MS, GC and 600 MHz $^1$H-NMR. The component sugar was estimated to be glucose. In the ceramide, the fatty acid component consist was 2-hydroxy arachidic acid. The long-chain base component was sphinga-4,8-dienine.

Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model

  • Byung Jo, Choi;Kang Ho, Park;Min Hee, Park;Eric Jinsheng, Huang;Seung Hyun, Kim;Jae-sung, Bae;Hee Kyung, Jin
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.621-626
    • /
    • 2022
  • Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.

The sphingoid base 1-phosphate as an endogenous marker for Myocardiac Infarction

  • Yoo, Jae-Myung;Choi, Heon-Kyo;Choi, Bo-Yun;Park, Jeong-Euy;Lee, Yong-Moon;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.162.1-162.1
    • /
    • 2003
  • The purpose of this study was to determine the possibility of sphingolipid as a diagnostic marker for Myocardiac Infarction(MI), atherosclerosis-related cardiovascular disease. Sphingolipids are known to playa role in the occurrence of atherosclerosis in human blood vessels. Platelet-poor plasma(PPP) and washed platelets were prepared from healthy volunteers and MI patients, and sphingolipids analyzed. (omitted)

  • PDF

사람의 Serine palmitoryl transferase II 및 ceramidase의 promoter에 대한 연구

  • Kim, Hui-Suk;Song, Seong-Gwang;Lee, Eun-Yeol;Lee, Sang-Do;Linn, Steve;Merrill, Alfred H.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.588-591
    • /
    • 2000
  • Serine palmitoyl transferase(SPT) and ceramidase are the key enzymes in sphingolipid biosynthesis. To study sphingolipid metabolism, we have got the 5'-upstream regions of human serine palmitoyl transferase subunit II and acid ceramidase gene by using GenomeWalker kits(Clontech Co.). Human genomic DNA was purified from HT29, human colon canser cell line by using DNAzol. We got several bands after secondary PCR and subcloned them to T7bule vector. Human SPTII promoter which we got was 2690bp but we cut it with Bgl II and vector with Bgl II and BamH I, and subcloned 1782bp to pGL2-enhancer vector and pGL2-basic vector with luciferase reporter gene. Human acid ceramidase promoter which we got were 2028bp and 1034bp and subcloned to pGL2-enhancer vector and pGL2-basic vector. We transfected these promoters to HT29 cell and assayed luciferase activity. For measuring transfection efficiency, pRL-TK vector with seapancy luciferase reproter gene was cotransfected with these promoters.

  • PDF

Effect of Expression of Genes in the Sphingolipid Synthesis Pathway on the Biosynthesis of Ceramide in Saccharomyces cerevisiae

  • Kim, Se-Kyung;Noh, Yong-Ho;Koo, Ja-Ryong;Yun, Hyun-Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.356-362
    • /
    • 2010
  • Ceramide is important not only for the maintenance of the barrier function of the skin but also for the water-binding capacity of the stratum corneum. Although the exact role of ceramide in the human skin is not fully understood, ceramide has become a widely used ingredient in cosmetic and pharmaceutical industries. Compared with other microorganisms, yeast is more suitable for the production of ceramide because yeast grows fast and is non-toxic. However, production of ceramide from yeast has not been widely studied and most work in this area has been carried out using Saccharomyces cerevisiae. Regulating the genes that are involved in sphingolipid synthesis is necessary to increase ceramide production. In this study, we investigated the effect of the genes involved in the synthesis of ceramide, lcb1, lcb2, tsc10, lac1, lag1, and sur2, on ceramide production levels. The genes were cloned into pYES2 high copy number vectors. S. cerevisiae was cultivated on YPDG medium at $30^{\circ}C$. Ceramide was purified from the cell extracts by solvent extraction and the ceramide content was analyzed by HPLC using ELSD. The maximum production of ceramide (9.8 mg ceramide/g cell) was obtained when the tsc10 gene was amplified by the pYES2 vector. Real-time RT-PCR analysis showed that the increase in ceramide content was proportional to the increase in the tsc10 gene expression level, which was 4.56 times higher than that of the control strain.

Links between accelerated replicative cellular senescence and down-regulation of SPHK1 transcription

  • Kim, Min Kyung;Lee, Wooseong;Yoon, Gang-Ho;Chang, Eun-Ju;Choi, Sun-Cheol;Kim, Seong Who
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.220-225
    • /
    • 2019
  • We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adipose-derived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin $B_1$, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division.

Profiling Analysis of Sphingolipids in HL-60 Cells by High-Performance Liquid Chromatography-Tandem Mass Spectrometry in combination with Multiple Reaction Monitoring

  • Son, Jung-Hyun;Lee, Jae-Ick;Yang, Ryung;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.288.3-289
    • /
    • 2003
  • Sphingolipid species are important second messengers due to their role in the mitogenesis, differentiation and apoptosis. We developed a new column liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) in combination with multiple reaction monitoring (MRM) method for the rapid, simultaneous and quantitative determination of unambiguous detecting sphingolipids in cell culture of human cancer cells (HL-60). (omitted)

  • PDF