Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.1.134

Effects of Synthetic Pseudoceramides on Sphingosine Kinase Activity in F9-12 Cells  

Jin, You-Xun (College of Pharmacy, Chungbuk National University)
Shin, Kyong-Oh (College of Pharmacy, Chungbuk National University)
Park, Myung-Yong (College of Pharmacy, Chungbuk National University)
Lee, Shin-Hee (Neopharm Co. Ltd.)
Park, Byeong-Deog (Neopharm Co. Ltd.)
Oh, Sei-Kwan (College of Medicine, Ewha Womens University)
Yoo, Hwan-Soo (College of Pharmacy, Chungbuk National University)
Lee, Yong-Moon (College of Pharmacy, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.19, no.1, 2011 , pp. 134-139 More about this Journal
Abstract
Sphingosine kinase (SPHK) has a central role to control cell death and cell proliferation, which is suggested as a sphingolipid rheostat by regulating the levels between ceramide and sphingosine 1-phosphate (S1P). Therefore, physiological regulators of SPHK will be a good candidate to develop a new targeted drug. For this purpose, a series of synthetic pseudoceramides were tested by SPHK assay either cell-based or cell-free system. K10PC-5 strongly inhibited SPHK, while K6PC-5 activated SPHK in cell-free system. Specifically, K6PC-5 activated SPHK under the co-treatment with $50\;{\mu}M$ dimethylsphingosine (DMS), a SPHK inhibitor. Collectively, we developed a simple SPHK assay system to find SPHK regulatory pseudoceramide compounds, K10PC-5 and K6PC-5 which may be useful to cancer treatment or immune regulation like FTY720, a synthetic sphingolipid mimetic compound.
Keywords
Pseudoceramide; Sphingosine kinase; F9 cells; Assay system;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Megidish, T., White, T., Takio, K., Titani, K., Igarashi, Y. and Hakomori, S. (1995) The signal modulator protein 14-3-3 is a target of sphingosine- or N,N-dimethylsphingosine-dependent kinase in 3T3 (A31) cells. Biochem. Biophys. Res. Commun. 216, 739-747.   DOI
2 Ogretmen, B. and Hannun, Y. A. (2001) Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist. Updat. 4, 368-377.   DOI
3 Olivera, A., Rosenfeldt, H.M., Bektas, M., Wang, F., Ishii, I., Chun, J., Milstien, S. and Spiegel, S. (2003) Sphingosine kinase type 1 induces G12/13-mediated stress fi ber formation, yet promotes growth and survival independent of G protein-coupled receptors. J. Biol. Chem. 278, 46452-46460.   DOI
4 Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S. and Spiegel, S. (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 554, 189-193.   DOI
5 Pitman, M. R. and Pitson S. M. (2010) Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr. Cancer Drug Targets 10, 354-367.   DOI
6 Pyne, S. and Pyne, N. J. (2000) Sphingosine 1-phosphate signaling in mammalian cells. Biochem. J. 349, 385-402.   DOI
7 Pyne, N. J. and Pyne, S. (2008) Sphingosine 1-phosphate, lysophosphatidic acid and growth factor signaling and termination. Biochim. Biophys. Acta. 1781, 467-476.   DOI   ScienceOn
8 Sharma, A. K., Sk, U. H., Gimbor, M. A., Hengst, J. A., Wang, X., Yun, J. and Amin, S. (2010) Synthesis and bioactivity of sphingosine kinase inhibitors and their novel aspirinyl conjugated analogs. Eur. J. Med. Chem. 45, 4149-4156.   DOI
9 Spiegel, S., English, D. and Milstien, S. (2002) Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol. 12, 236-242.   DOI
10 Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. and Kluk, M. J. (2001) Lysophospholipids-receptor revelations. Science 294, 1875-1878.   DOI
11 Igarashi, Y., Hakomori, S., Toyokuni, T., Dean, B., Fujita, S., Sugimoto, M., Ogawa, T., Ghendy, K. and Racker, E. (1989) Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry 28, 6796-6800.   DOI
12 Johnson, K. R., Becker, K. P., Facchinetti, M. M., Hannun, Y. A. and Obeid, L. M. (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. J. Biol. Chem. 38, 35257-35262.
13 King, C. C., Zenke, F. T., Dawson, P. E., Dutil, E. M., Newton, A. C., Hemmings, B. A., and Bokoch, G. M. (2000) Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J. Biol. Chem. 275, 18108-18113.   DOI
14 Kluk, M. J. and Hla, T. (2002) Signaling of sphingosine-1-phosphate via the SIP/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta. 1582, 72-80.   DOI   ScienceOn
15 McDonald, O. B., Hannun, Y. A., Reynolds, C. H. and Sahyoun, N. (1991) Activation of casein kinase II by sphingosine. J. Biol. Chem. 266, 21773-21776.
16 Kwon, Y. B., Kim, C. D., Youm, J. K., Gwak, H. S., Park, B. D., Lee, S. H., Jeon S., Kim, B. J., Seo, Y. J., Park, J. K. and Lee, J. H. (2007) Novel synthetic ceramide derivatives increase intracellular calcium levels and promote epidermal keratinocyte differentiation. J. Lipid Res. 48,1936-1943   DOI
17 Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S. and Hla, T. (1996) Sphingosine 1-phosphate as a ligand for the G-protein-coupled receptor EDG-1. Science 279, 1552-1555.
18 Maceyka, M., Payne, S.G., Milstien, S. and Spiegel, S. (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta. 1585, 193-201.   DOI   ScienceOn
19 Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N. and Baumruker, T. (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 278, 47408-47415.   DOI
20 Brinkmann, V. (2009) FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol. 158, 1173-1182.   DOI
21 Claus, R., Russwurm, S., Meisner, M., Kinscherf, R. and Deigner, H. P. (2000) Modulation of the ceramide level, a novel therapeutic concept? Curr. Drug Targets 1, 185-205.   DOI
22 Hannun, Y. A. and Obeid, L. M. (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73-77.   DOI
23 Hengst, J. A., Wang, X., Sk, U. H., Sharma, A. K., Amin, S. and Yun, J. K. (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg. Med. Chem. Lett. 20, 7498-74502.   DOI
24 Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., D’Andrea, R. J. and Vadas, M. A. (2000) An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527-1530.   DOI
25 Walter S., and Fassbender K. (2010) Spingolipids in Multiple Sclerosis. Cell Physiol. Biochem. 26, 49-56.   DOI
26 Watterson, K., Sankala, H., Milstien, S. and Spiegel, S. (2003) Pleiotropic actions of sphingosine-1-phosphate. Prog. Lipid Res. 42, 344-357.   DOI
27 Xia, P., Wang, L., Gamble J.R. and Vadas, M.A. (1999) Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J. Biol. Chem. 274, 34499-34505.   DOI