Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.12.142

Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model  

Byung Jo, Choi (KNU Alzheimer's Disease Research Institute, Kyungpook National University)
Kang Ho, Park (KNU Alzheimer's Disease Research Institute, Kyungpook National University)
Min Hee, Park (KNU Alzheimer's Disease Research Institute, Kyungpook National University)
Eric Jinsheng, Huang (Department of Pathology, University of California San Francisco)
Seung Hyun, Kim (Department of Neurology, Hanyang University College of Medicine)
Jae-sung, Bae (KNU Alzheimer's Disease Research Institute, Kyungpook National University)
Hee Kyung, Jin (KNU Alzheimer's Disease Research Institute, Kyungpook National University)
Publication Information
BMB Reports / v.55, no.12, 2022 , pp. 621-626 More about this Journal
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.
Keywords
Acid sphingomyelinase; Amyotrophic lateral sclerosis; FUS; Motor behavioral dysfunction; Motor neuronal loss;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Park MH, Jin HK and Bae JS (2020) Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp Mol Med 52, 380-389    DOI
2 Jenkins RW, Canals D and Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21, 836-846    DOI
3 Xiang Li, Erich Gulbins and Yang Zhang (2012) Oxidative stress triggers Ca-dependent lysosome trafficking and activation of acid sphingomyelinase. Cell Physiol Biochem 30, 815-826 
4 Smith EL and Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 22, 3419-3431    DOI
5 Park MH, Lee JY, Park KH et al (2018) Vascular and neurogenic rejuvenation in aging mice by modulation of ASM. Neuron 100, 167-182    DOI
6 Qiu H, Lee S, Shang Y et al (2014) ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest 124, 981-999    DOI
7 Mitchell JC, McGoldrick P, Vance C et al (2013) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125, 273-288    DOI
8 Sharma A, Lyashchenko AK, Lu L et al (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun 7, 10465 
9 Hewitt C, Kirby J, Highley JR et al (2010) Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 67, 455-461    DOI
10 Cutler RG, Pedersen WA, Camandola S, Rothstein JD and Mattson MP (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52, 448-457    DOI
11 Arenas A, Kuang L, Zhang J, Kingren MS and Zhu H (2021) FUS regulates autophagy by mediating the transcription of genes critical to the autophagosome formation. J Neurochem 157, 752-763    DOI
12 Baskoylu SN, Chapkis N, Unsal B et al (2022) Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis. Cell Rep 38, 110195 
13 Petrov D, Mansfield C, Moussy A and Hermine O (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci 9, 68 
14 Kornhuber J, Tripal P, Reichel M et al (2010) Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26, 9-20    DOI
15 Park MH, Park KH, Choi BJ et al (2022) Discovery of a dual-action small molecule that improves neuropathological features of Alzheimer's disease mice. Proc Natl Acad Sci U S A 119, e2115082119 
16 Horinouchi K, Erlich S, Perl DP et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 10, 288-293    DOI
17 Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T and Suzuki N (2016) Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain 139, 2380-2394    DOI
18 Rowland LP and Shneider NA (2001) Amyotrophic lateral sclerosis. New Engl J Med 344, 1688-1700    DOI
19 Chio A, Logroscino G, Hardiman O et al (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10, 310-323    DOI
20 Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3, 17071 
21 Zou ZY, Zhou ZR, Che CH, Liu CY, He RL and Huang HP (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatr 88, 540-549    DOI
22 Boylan K (2015) Familial ALS. Neurol Clin 33, 807-830    DOI
23 Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD and Akkari PA (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13, 1310 
24 Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR and Gitler AD (2020) ALS genetics: gains, losses, and implications for future therapies. Neuron 108, 822-842    DOI
25 Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211    DOI
26 Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59 
27 Oakes JA, Davies MC and Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 10, 5 
28 Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672    DOI
29 Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257-268    DOI
30 Schissel SL, Schuchman EH, Williams KJ and Tabas I (1996) Zn2+-stimulatedZn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271, 18431-18436    DOI
31 Kornhuber J, Rhein C, Muller CP and Muhle C (2015) Secretory sphingomyelinase in health and disease. Biol Chem 396, 707-736 
32 Lee JK, Jin HK, Park MH et al (2014) Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J Exp Med 211, 1551-1570    DOI
33 Ong WY, Herr DR, Farooqui T, Ling EA and Farooqui AA (2015) Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 19, 1725-1742    DOI