• Title/Summary/Keyword: Spherical Indenter

Search Result 27, Processing Time 0.028 seconds

Performance analysis of spherical indentation process during loading and unloading - a contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.469-483
    • /
    • 2014
  • In an indentation approach, the smooth rigid spherical ball penetrated into a deformable flat is considered for the study based on contact mechanics approach. The elastic-plastic frictionless spherical indentation analysis has been under taken in the finite element analysis using "ABAQUS" and experimental study. The spherical indentation has been studied for the materials like steel, aluminium, copper and brass with an identical spherical indenter for diverse indentation depths. The springback analysis is executed for studying the actual indentation depth after the indenter is unloaded. In the springback simulation, the material recovers its elastic deformation after the indenter is unloaded. The residual diameter and depth of an indentation for various materials are measured and compared with simulation results. It shows a good agreement between the simulation and an experimental studies.

Influence of Indenter Tip Geometry and Poisson's Ratio on Load-Displacement Curve in Instrumented Indentation Test (계장화 압입시험의 하중-변위 곡선에 미치는 선단 형상 및 푸아송비의 영향)

  • Lee, Jin Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.943-951
    • /
    • 2014
  • The tip geometries of the pyramidal and conical indenters used for micro/nano-indentation tests are not sharp. They are inevitably rounded because of their manufacturability and wear. In many indentation studies, the tip geometries of the pyramidal indenters are simply assumed to be spherical, and the theoretical solution for spherical indentation is simply applied to the geometry at a shallow indentation depth. This assumption, however, has two problems. First, the accuracy of the theoretical solution depends on the material properties and indenter shape. Second, the actual shapes of pyramidal indenter tips are not perfectly spherical. Hence, we consider the effects of these two problems on indentation tests via finite element analysis. We first show the relationship between the Poisson's ratio and load-displacement curve for spherical indentation, and suggest improved solutions. Then, using a possible geometry for a Berkovich indenter tip, we analyze the characteristics of the load-displacement curve with respect to the indentation depth.

Influence of indenter shape on nanoindentation: an atomistic study

  • Lai, Chia-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • v.6 no.3
    • /
    • pp.301-316
    • /
    • 2013
  • The influence of indenter geometry on nanoindentation was studied using a static molecular dynamics simulation. Dislocation nucleation, dislocation locks, and dislocation movements during nanoindentation into Al (001) were studied. Spherical, rectangular, and Berkovich indenters were modeled to study the material behaviors and dislocation activities induced by their different shapes. We found that the elastic responses for the three cases agreed well with those predicted from elastic contact theory. Complicated stress fields were generated by the rectangular and Berkovich indenters, leading to a few uncommon nucleation and dislocation processes. The calculated mean critical resolved shear stresses for the Berkovich and rectangular indenters were lower than the theoretical strength. In the Berkovich indenter case, an amorphous region was observed directly below the indenter tip. In the rectangular indenter case, we observed that some dislocation loops nucleated on the plane. Furthermore, a prismatic loop originating from inside the material glided upward to create a mesa on the indenting surface. We observed an unusual softening phenomenon in the rectangular indenter case and proposed that heterogeneously nucleating dislocations are responsible for this.

Enhanced Spherical Indentation Techniques for Rubber Property Evaluation (향상된 구형압입 고무 물성평가법)

  • Hwang, Kyu-Min;Oh, Jopng-Soo;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1357-1365
    • /
    • 2009
  • In this study, we enhance the numerical approach of Lee et al.$^{(1)}$ to spherical indentation technique for property evaluation of hyper-elastic rubber. We first determine the friction coefficient between rubber and indenter in a practical viewpoint. We perform finite element numerical simulations for deeper indentation depth. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We then improve two normalized functions mapping an indentation load vs. deflection curve into a strain energy density vs. first invariant curve, the latter of which in turn gives the Yeoh-model constants. The enhanced spherical indentation approach produces the rubber material properties with an average error of less than 3%.

Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-Elastic Rubber (초탄성고무 물성평가용 미소압입시험기의 소프트웨어 및 하드웨어 개발)

  • Lee, Hyung-Yil;Kim, Dong-Wook;Lee, Jin-Haeng;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.816-825
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are examined via finite element (FE) analyses. An optimal location for data analysis is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/com-pression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve with an average error less than 3%.

A Measurement of Adhesion Energy between Viscoelastic/Elastic, Viscoelastic/Viscoelastic Materials Using Contact Mechanics Approach (접촉 역학적 접근에 의한 점탄성/탄성, 점탄성/점탄성 재료간의 접합 에너지 측정)

  • Lee, C.;Earmme, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1030-1035
    • /
    • 2003
  • The nanoimprint lithography technology makes higher density of semiconductor device and larger capacity of storage media. In this technology the induced damage while detaching polymer pattern from mold should be minimized. In order to analyze the problem, the basic knowledge of adhesion between the polymer and the mold is required. In this study a contact experiment of polyisobutylene specimen with spherical steel tip and polyisobutylene bead tip was conducted using nano indenter. During the contact experiment with various loading rate under load control the contact behavior of viscoelastic material was measured, i.e., the load and displacement between the tip and the specimen were measured. The data was analyzed by HBK model to obtain the stress intensity factor of contact edge and the contact radius as a function of time. Also the adhesion energies between steel/polyisobutylene and polyisobutylene/polyisobutylene were obtained employing the analysis of the crack of viscoelastic material by Schapery.

  • PDF

Some Remarks on the Spherical Indentation Theory (구형 압입이론에 관한 고찰)

  • Lee, Jin-Haeng;Lee, Hyeong-Il;Song, Won-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.714-724
    • /
    • 2001
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.

Mechanical Properties and Contact Damage of Silicon Nitrides Nitrides : II. Effect of Microstructure (질화규소의 기계적 성질 및 접촉 손상 : II. 미세구조의 영향)

  • 이승건
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 1998
  • The effect of the $\alpha$/$\beta$ phase fraction on the mechanical properties in silicon nitrides was investigated in part 1. In part II, we describe the role of microstructure on the mechanical properties and contact damage of silicon nitrides with coarse/equiaxed and coarse/elongated microstructures. Grain sizes and shapes were controlled by starting powder. Hertzian indentation using spherical indenter was also used to investigate contact damage behavior. Cone cracks from the spherical indentation were suppressed when the silicon nitride contains coarse and elongated grains. Coarse and elongated grains played an important role of cone crack suppression. The size of quasi-plastic zone does not depend on grain size or shape but depends on the fraction of $\alpha$/$\beta$ phase. A quasi-plastic zone was consisting of microcracks by shear stress during indentation.

  • PDF

Development and Verification of Micro-indentation Technique for Material Property Evaluation of Hyper-elastic Rubber (초탄성고무 물성평가용 미소압입시험법 개발 및 검증)

  • Lee, Hyung-Il;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.132-137
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via [mite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions. which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress.strain curve with an average error less than 3%.

  • PDF