• Title/Summary/Keyword: Spherical Aberration

Search Result 110, Processing Time 0.021 seconds

A Study for the Limitation of Measurement Accuracy and Reliability of Autostigmatic Null lens System by Adjustment and Fixing Process (조정방식과 경통고정방식에 대한 자동무수차점 널 렌즈 광학계의 측정 정밀도 한계 및 신뢰도)

  • Lee, Young-Hun;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2005
  • The limitation of measurement accuracy and reliability of autostigmatic null lens system are studied for the cases of using inter-distance of null lenses as the adjustment factor of alignment and fixing the distance by mounting. If we investigate the first case, the wavefront aberration of null lens system is compensated by the adjustment process even though the shape of aspherical surface is not properly fabricated. As the result, it brings about the problem of measurement reliability. However, for the fixing process by mounting null lenses, it doesn't cause the reliability problem because the wavefront aberration of null lens system is not compensated. Further, the fixing process shows nearly same result in measurement accuracy to the adjustment process, that is, $0.0316{\lambda}$ vs. $0.0326{\lambda}$. So, we can conclude the setup for autostigmatic null lens system must be constituted by means of the fixing process. Meanwhile, we introduce and define the alignment aperture on aspheircal mirror, which can be approximated as spherical zone for alignment of null lens system, and besides, we calculate the required fabrication accuracy of the zone for the necessary measurement accuracy.

Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

Design of 4:1 I$\mathbb{R}$ zoom afocal telescope (원적외선 대역 4 : 1 줌 망원경 광학계 설계)

  • 김현숙;김창우;홍석민
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1998
  • A high performance afocal zoom telescope has been designed to operate in the 7.6${\mu}{\textrm}{m}$ to 10.3${\mu}{\textrm}{m}$ waveband for thermal imaging system. This IR zoom telescope is characterized by using of two movable optical element groups, variator and compensator, with mechanically compensated method and the positioning of these groups is controlled by means of a computerized program. The optical performance over the entire 4:1 zoom range and $\pm$2.31~$\pm$9.36 degrees field of view is near diffraction limit while maintaining a constant F-number. The all refracting surfaces of this system except only one aspheric surface are spherical curvature and the material for the optical elements is selected Ge and ZnSe which is used for correction of chromatic aberration.

  • PDF

The effect of shaded apodizer on the read-out signal in an optical dise system (Shaded apodizer가 광학 디스크 시스템의 wotodf 신호에 미치는 영향)

  • 박성종;심상현
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.443-447
    • /
    • 1999
  • To investigate the effect of a shaded apodizer on the read-out signal in an optical disc system, we consider the is apodizer in which the amplitude transmittance decreases gradually from the center of pupil toward its edge and the iH apodizer in which the amplitude transmittance increases gradually from the center of pupil toward its edge, using the scalar diffraction theory. We also consider the bump shapes which are a cylindric, a semi-conic, and a conic bump, and bump height which is given by $\lambda/4$ and occurs to the phase change $(\pi)$). The read-out signal of is apodizer increases from S = 0 upto maximum value, and then decreases for increasingly larger values of bOo While the iH apodizer has two maximum values. When an optical disc system has a spherical aberration $(W_{40}=0.5\lambda)$, the maximum read-OUt signal of is apodizer is higher than that of iv apodizer which has no apodizer.odizer.

  • PDF

Focal Reducer for McDonald Otto Struve Telescope

  • Lim, Ju-Hee;Kim, Young-Ju;Park, Won-Kee;Kim, Jin-Young;Chang, Seung-Hyuk;Pak, Soo-Jong;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2010
  • The CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera optimized for observation of high redshift objects. It is going to be attached to the cassegrain focus of 2.1m telescope at McDonald Observatory, USA. We are making a focal reducer for CQUEAN to secure a larger field of view. The focal reducer is composed of four spherical lens, and it reduces the focal length of telescope by one third. We designed the lens configuration, performed tolerance analysis, and estimated the optical performance with ZEMAX. The differences in optical performace with/without filters were also investigated. The result from ZEMAX shows that the system has ample margin of errors for median seeing of 1.2" at McDonald observatory. Even with aberration and alignment tolerance, the performance is better than the original requirement. The lenses are now being made, and the lens barrel and an adapter for assembly of the Andor CCD camera and the filter wheel is now under designing process. We expect that the manufacturing of the focal reducer system as well as its optical test will be finished by April 2010.

  • PDF

The effect of phase modulation on the central peak intensity in an optical system (광학계의 위상 변조 조건에 따른 중심 강도 변화)

  • 이영철;정창섭;박성종;이윤우
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2000
  • A lot of varIOUS studies are taking advantage of annular masks or various pupil filters to design optical systems such as a digital versatile disc (DVD) pick up head and precise scanning microscopy that have the superresolution beyond the diffraction limit. We considered both annular mask and pupil filter for the superresolution system. Since image quality is a function of annular width, position and modulation amount, we computel'lzed the optimized condition for the phase modulation and mvestigated the variation of lhe center peak: intensity for the phase modulated system From tills result, we were able to detenrune the best conditions for the annular apodizer, wluch give the maximum value of the center peak intensity_ We made especially sure that the phase modulated system have an excellent compensation for spherical aberration as it lllcreases. eases.

  • PDF

Fabrication of diffractive optical element for objective lens of small form factor data storage device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.35-40
    • /
    • 2005
  • The demand for small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable for mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-molding process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the shapes of master, mold and molded pattern were measured by optical scanning profiler. The deviation between the master and the molded DOE was less than 0.1um. The efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

  • PDF

Research on Fabrication of Silicon Lens for Optical Communication by Photolithography Process (포토리소그래피를 통한 광통신용 실리콘 렌즈 제작 및 특성 연구)

  • Park, Junseong;Lee, Daejang;Rho, Hokyun;Kim, Sunggeun;Heo, Jaeyeong;Ryu, Sangwan;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.35-39
    • /
    • 2018
  • In order to improve the coupling efficiency, a collimator lens that collects the light emitted from the laser diode at a wide angle to the core of the optical fiber is essential. Glass mold method using a mold is widely used as a collimator lens currently used. Although this method is inexpensive to produce, it is difficult to form precisely and quality problems such as spherical aberration. In this study, the precision of surface processing was improved by replacing the existing glass mold method with the semiconductor process, and the material of the lens was changed to silicon suitable for the semiconductor process. The semiconductor process consists of a photolithography process using PR and a dry etching process using plasma. The optical coupling efficiency was measured using an ultra-precision alignment system for the evaluation of the optical characteristics of the silicon lens. As a result, the optical coupling efficiency was 50% when the lens diameter was $220{\mu}m$, and the optical coupling property was 5% or less with respect to the maximum optical coupling efficiency in the lens diameter range of $210-240{\mu}m$.

Surface-error Measurement for a Convex Aspheric Mirror Using a Double-stitching Method (이중 정합법을 이용한 볼록비구면 반사경의 형상 오차 측정)

  • Kim, Goeun;Lee, Yun-Woo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.314-322
    • /
    • 2021
  • A reflecting telescope consists of a concave primary mirror and a convex secondary mirror. The primary mirror is easy to measure, because it converges the beam from an interferometer, while the secondary mirror diverges the beam and so is not easy to measure, even though it is smaller than the primary mirror. In addition, the Korsch-type telescope uses the central area of the secondary mirror, so that the entire area of the secondary mirror needs to be measured, which the classical Hindle test cannot do. In this paper, we propose a double-stitching method that combines two separate area measurements: the annular area, measured using the Hindle stitching method, and the central area, measured using a spherical wave from the interferometer. We test the surface error of a convex asphere that is 202 mm in diameter, with 499 mm for its radius of curvature and -4.613 for its conic constant. The surface error is calculated to be 19.5±1.3 nm rms, which is only 0.7 nm rms different from the commercial stitching interferometer, ASI. Also, the two results show a similar 45° astigmatism aberration. Therefore, our proposed method is found to be valuable for testing the whole area of a convex asphere.

Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1 (초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계)

  • Kim, Se-Jin;Ko, Jung-Hui;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.