• Title/Summary/Keyword: Sphere Theorem

Search Result 28, Processing Time 0.03 seconds

ON THE GAUSS MAP OF SURFACES OF REVOLUTION WITHOUT PARABOLIC POINTS

  • Kim, Young-Ho;Lee, Chul-Woo;Yoon, Dae-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1141-1149
    • /
    • 2009
  • In this article, we study surfaces of revolution without parabolic points in a Euclidean 3-space whose Gauss map G satisfies the condition ${\Delta}^hG\;=\;AG,A\;{\in}\;Mat(3,{\mathbb{R}}),\;where\;{\Delta}^h$ denotes the Laplace operator of the second fundamental form h of the surface and Mat(3,$\mathbb{R}$) the set of 3${\times}$3-real matrices, and also obtain the complete classification theorem for those. In particular, we have a characterization of an ordinary sphere in terms of it.

LIMIT RELATIVE CATEGORY THEORY APPLIED TO THE CRITICAL POINT THEORY

  • Jung, Tack-Sun;Choi, Q-Heung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.311-319
    • /
    • 2009
  • Let H be a Hilbert space which is the direct sum of five closed subspaces $X_0,\;X_1,\;X_2,\;X_3$ and $X_4$ with $X_1,\;X_2,\;X_3$ of finite dimension. Let J be a $C^{1,1}$ functional defined on H with J(0) = 0. We show the existence of at least four nontrivial critical points when the sublevels of J (the torus with three holes and sphere) link and the functional J satisfies sup-inf variational inequality on the linking subspaces, and the functional J satisfies $(P.S.)^*_c$ condition and $f|X_0{\otimes}X_4$ has no critical point with level c. For the proof of main theorem we use the nonsmooth version of the classical deformation lemma and the limit relative category theory.

A BORSUK-ULAM TYPE THEOREM OVER ITERATED SUSPENSIONS OF REAL PROJECTIVE SPACES

  • Tanaka, Ryuichi
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.251-263
    • /
    • 2012
  • A CW complex B is said to be I-trivial if there does not exist a $\mathbb{Z}_2$-map from $S^{i-1}$ to S(${\alpha}$) for any vector bundle ${\alpha}$ over B a any integer i with i > dim ${\alpha}$. In this paper, we consider the question of determining whether $\Sigma^k\mathbb{R}P^n$ is I-trivial or not, and to this question we give complete answers when k $\neq$ 1, 3, 8 and partial answers when k = 1, 3, 8. A CW complex B is I-trivial if it is "W-trivial", that is, if for every vector bundle over B, all the Stiefel-Whitney classes vanish. We find, as a result, that $\Sigma^k\mathbb{R}P^n$ is a counterexample to the converse of th statement when k = 2, 4 or 8 and n $\geq$ 2k.

A NOTE ON EXTREMAL LENGTH AND CONFORMAL IMBEDDINGS

  • Chung, Bo-Hyun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1315-1322
    • /
    • 2010
  • Let D be a plane domain whose boundary consists of n components and $C_1$, $C_2$ two boundary components of D. We consider the family $F_1$ of conformal mappings f satisfying f(D) $\subset$ {1 < |w| < ${\mu}(f)$}, $f(C_1)=\{|w|=1\}$, $f(C_2)=\{|w|={\mu}(f)\}$. There are conformal mappings $g_0$, $g_1({\in}F_1)$ onto a radial and a circular slit annulus respectively. We obtain the following theorem, $$\{{\mu}(f)|f\;{\in}\;F_1\}=\{\mu|\mu(g_1)\;{\leq}\;{\mu}\;{\leq}\;{\mu}(g_0)\}$$. And we consider the family $F_n$ of conformal mappings $\tilde{f}$ from D onto a covering surfaces of the Riemann sphere satisfying some conditions. We obtain the following theorems, {$\mu|1$ < ${\mu}\;{\leq}\;{\mu}(g_1)$} ${\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_2\}\;{\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_n\}$ and ${\mu}(\tilde{f})\;{\leq}\;{\mu}(g_0)^n$.

Evaluation of Discharge Current Employing Generalized Energy Method and Integral Ohm's Law Using Finite Element Method (유한요소법을 이용한 일반화된 에너지법과 옴의 적분법에 의한 방전 전류 계산)

  • Lee, Ho-Young;Kim, Hong-Joon;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.357-361
    • /
    • 2011
  • The terminal current in voltage driven systems is an essential role for characterizing the pattern of electric discharge such as corona, breakdown, etc. Until now, to evaluate this terminal current, Sato's equation has been widely used in areas of high voltage and plasma discharge. Basically Sato's equation was derived by using the energy balance equation and its final form described physical meaning explicitly. To give more general abilities in Sato's equation, we present a generalized approach by directly using the Poynting's theorem incorporating the finite element method. When the magnetic field effect or the time-dependent voltage source is considered, this generalized energy method can be easily applicable to those problems with any dielectric media such as gas, fluid, and solid. As an alternative approach, the integral Ohm's law resulting in small numerical errors has an ability to be applied to multi-port systems. To test the generalized energy method and integral Ohm's law, first, the results from two prosed methods were compared to those from Sato's approach and an analytic solution in parallel plane electrodes. After verification, the generalized method was applied to the tip-sphere electrodes for evaluating the terminal current with three carriers and the Fowler-Nordheim field emission condition. From these results, we concluded that the generalized energy method can be a consistent technique for evaluating the discharge current with various dielectric materials or large magnetic field.

HYPERSURFACES WITH PRESCRIBED MEAN CURVATURE IN MEASURE METRIC SPACE

  • Zhengmao Chen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1085-1100
    • /
    • 2023
  • For any given function f, we focus on the so-called prescribed mean curvature problem for the measure e-f(|x|2)dx provided thate-f(|x|2) ∈ L1(ℝn+1). More precisely, we prove that there exists a smooth hypersurface M whose metric is ds2 = dρ2 + ρ2d𝜉2 and whose mean curvature function is ${\frac{1}{n}}(\frac{u^p}{{\rho}^{\beta}})e^{f({\rho}^2)}{\psi}(\xi)$ for any given real constants p, β and functions f and ψ where u and ρ are the support function and radial function of M, respectively. Equivalently, we get the existence of a smooth solution to the following quasilinear equation on the unit sphere 𝕊n, $${\sum_{i,j}}({{\delta}_{ij}-{\frac{{\rho}_i{\rho}_j}{{\rho}^2+|{\nabla}{\rho}|^2}})(-{\rho}ji+{\frac{2}{{\rho}}}{\rho}j{\rho}i+{\rho}{\delta}_{ji})={\psi}{\frac{{\rho}^{2p+2-n-{\beta}}e^{f({\rho}^2)}}{({\rho}^2+|{\nabla}{\rho}|^2)^{\frac{p}{2}}}}$$ under some conditions. Our proof is based on the powerful method of continuity. In particular, if we take $f(t)={\frac{t}{2}}$, this may be prescribed mean curvature problem in Gauss measure space and it can be seen as an embedded result in Gauss measure space which will be needed in our forthcoming papers on the differential geometric analysis in Gauss measure space, such as Gauss-Bonnet-Chern theorem and its application on positive mass theorem and the Steiner-Weyl type formula, the Plateau problem and so on.

The computation of the torso surface potentials using the boundary element method (경계요소법을 이용한 트로소 표면전위의 계산)

  • 이경중;이세진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.22-29
    • /
    • 1996
  • This study describes a method to find the torso surface potential based on the boundary element method. In order to find the torso surface potential, the governing equation was developed based on the green's second theorem. The boundary element method (BEM) which has a good computing capability in case of homogeneous and isotropic medium was applied to solve the equation. to validate the BEM, we considered a homogeneous sphere model which has an electrric dopole source inside. The results showed the good agreement between the analytic solution and the computed solution. In normal heart, the simulated torso surface isopotential maps are good agreement with that obtained form the ventricular excitation.

  • PDF

The Distribution of the Torso Surface Potentials based on electrical cardiac dipole source (심장의 전기쌍극자 소스에 의한 토르소 표면 전위의 분포)

  • Lee, K.J.;Lee, S.J.;Park, K.L.;Song, G.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.188-191
    • /
    • 1996
  • This study is to find the distribution of the torso surface potential based on electrical cardiac dipole source. In order to find the torso surface potential, the governing equation was developed based on the Green's second theorem. The boundary element method(BEM) which has a good computing capability in case of homogeneous and isotropic medium was applied to solve the equation. To validate the BEM, we considered a homogeneous sphere model which has an electric dipole source inside. The results showed the good agreement between the analytic solution and the computed solution. In normal heart, the simulated torso surface isopotential maps are good agreement with that obtained from the ventricular excitation. The validity of the simulated results were verified by comparing with other results.

  • PDF