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A BORSUK–ULAM TYPE THEOREM OVER ITERATED

SUSPENSIONS OF REAL PROJECTIVE SPACES

Ryuichi Tanaka

Abstract. A CW complex B is said to be I-trivial if there does not
exist a Z2-map from Si−1 to S(α) for any vector bundle α over B and
any integer i with i > dimα. In this paper, we consider the question

of determining whether ΣkRPn is I-trivial or not, and to this question
we give complete answers when k ̸= 1, 3, 8 and partial answers when
k = 1, 3, 8. A CW complex B is I-trivial if it is “W-trivial”, that is, if for

every vector bundle over B, all the Stiefel–Whitney classes vanish. We
find, as a result, that ΣkRPn is a counterexample to the converse of this
statement when k = 2, 4 or 8 and n ≥ 2k.

1. Introduction and results

For a real vector bundle α over a CW complex B, the index of α, denoted
by indα, is defined to be the largest integer i for which there exists a Z2-map
from the (i − 1)-sphere Si−1 to S(α) (see [1, 2, 6]). Here, S(α) is the sphere
bundle of α and it is regarded as Z2-space by the antipodal map on each fiber.
The sphere Si−1 is also regarded as Z2-space by the antipodal map. Obviously
we have the inequality indα ≥ dimα for any α. The underlying space B is
said to be I-trivial if the equality indα = dimα holds for every vector bundle
α over B. With this terminology, the classical Borsuk–Ulam theorem can be
restated as the point space is I-trivial. Also, the sphere Sn is I-trivial if and
only if n ̸= 1, 2, 4, 8 (see [5, 7]). As for the stunted projective space FPn

m, where
F = R,C or H, with a function λF (n) suitably defined, it is shown in [9] that
FPn

m is I-trivial if and only if λF (n) < m ≤ n. Note that in [9] the symbol
θ(n) is used instead of λR(n).

In this paper, we investigate whether, for positive integers k and n, the
k-fold suspension ΣkRPn of RPn is I-trivial or not.

In general, for a vector bundle α, we have indα = dimα if the total Stiefel–
Whitney class W (α) is equal to 1 (see [6, Proposition 2.2]). The underlying
space B is said to be W-trivial if W (α) = 1 holds for every vector bundle α over
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B. Thus, we immediately have the following lemma, which is of fundamental
importance in our study.

Lemma 1.1. If B is W-trivial, then it is I-trivial.

Concerning whether ΣkRPn is W-trivial or not, we quote the following result
from [10].

Theorem 1.2 ([10, Theorem 1.4]). For positive integers k and n, the k-fold
suspension ΣkRPn of RPn is not W-trivial if and only if k and n satisfy one
of the following conditions:

(1) k = 1, 2, 4 or 8 and n ≥ k.
(2) k = 3, 5 or 7 and n+ k = 4 or 8.
(3) k = 6 and n = 2 or 3.

Accordingly, our goal is to determine whether or not ΣkRPn is I-trivial for
each pair (k, n) as in the above theorem. The results obtained in this paper
are summarized as the theorem below. Note that if k ≥ 9, ΣkRPn is I-trivial
for all n ≥ 1 since it is W-trivial.

Theorem 1.3. Let n be a positive integer.

(1) ΣRPn is not I-trivial if n = 1, 2 or 3.
(2) Σ2RPn is not I-trivial if and only if n = 2 or 3.
(3) Σ3RPn is not I-trivial only if n = 1 or 5. It is not I-trivial if n = 1.
(4) Σ4RPn is not I-trivial if and only if 4 ≤ n ≤ 7.
(5) Σ5RPn is not I-trivial if and only if n = 3.
(6) Σ6RPn is not I-trivial if and only if n = 2 or 3.
(7) Σ7RPn is not I-trivial if and only if n = 1.
(8) Σ8RPn is not I-trivial only if 8 ≤ n ≤ 15. It is not I-trivial if n = 8.

Thus, the following three cases remain still unsettled: (i) k = 1 with n ≥ 4,
(ii) k = 3 with n = 5, and (iii) k = 8 with 8 < n ≤ 15.

The next corollary, which is an immediate consequence of Theorems 1.2 and
1.3, shows that the converse of Lemma 1.1 is not always true.

Corollary 1.4. The following spaces are I-trivial, although they are not W-
trivial.

(1) Σ2RPn with n ≥ 4.
(2) Σ4RPn with n ≥ 8.
(3) Σ8RPn with n ≥ 16.

Throughout this paper, all cohomology is assumed to have coefficients Z2

unless otherwise stated. We often consider a homomorphism from H∗(ΣkRPn)
to H∗(RPm). We denote by skai the non-zero element of Hk+i(ΣkRPn) (1 ≤
i ≤ n), where a represents the generator of H∗(RPn) and sk represents k-fold
suspension. Besides this notation, we use the letter t to denote the generator of
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H∗(RPm) for m not necessarily equal to n. Hom(H̃∗(ΣkRPn), H̃∗(RPm)) de-

notes the group consisting of all homomorphisms (of degree 0) from H̃∗(ΣkRPn)

to H̃∗(RPm) as graded algebra over the Steenrod algebra mod 2.
Also, it is to be understood that the notation ξ always denotes the canonical

line bundle over RPn (for various values of n).

2. Preliminaries

Let B be a CW complex. The following proposition, which will be used to
show that B is I-trivial, is a slight generalization of Proposition 2.4 of [6].

Proposition 2.1. Let α be a vector bundle over B with dimα = m and let k
be an integer with m ≤ k.

(1) If g∗(W (α)) = 1 for any map g : RP k −→ B, then we have m ≤
indα ≤ k.

(2) If g∗(W (α)) = 1 for any map g : RPm −→ B, then we have indα = m.

Proof. Part (2) is the special case when k = m in part (1). We prove part
(1). Assume that indα > k. Then there exists a Z2-map f : Sk → S(α). We

consider the induced map f̃ : RP k → P (α), where P (α) denotes the associated
projective bundle of α. Denoting by e the Z2-Euler class of the line bundle
α → P (α), we have f̃∗(e) = t, where t is the generator of H∗(RP k). In
Hm(P (α)), there is a well-known relation as follows:

em =
m−1∑
i=0

wm−i(α) e
i.

Applying f̃∗ to this relation, we obtain the following relation in Hm(RP k):

tm =
m−1∑
i=0

g∗(wm−i(α)) t
i,

where g denotes the composite of f̃ and the projection p : P (α)→ B. Here, if
we suppose that g∗(W (α)) = 1, that is, g∗(wi(α)) = 0 for all i > 0, then the
above relation is reduced to tm = 0. However, we have tm ̸= 0 since m ≤ k.
This is a contradiction, so that the proof of Proposition 2.1 is completed. □

Remark. In the above proposition, the assumption of (1) holds especially when

Hom(H̃∗(B), H̃∗(RP k)) = 0. This gives Proposition 2.4 of [6]. Also, the as-
sumption of (2) trivially holds when W (α) = 1. This gives Proposition 2.2 of
[6].

The following proposition will be used to show that B is not I-trivial.

Proposition 2.2. Let d = 2, 4 or 8, and let ρd denote the Hopf vector bundle
over Sd. Assume there exist maps f : B −→ Sd and g : RP d −→ B such that

(f ◦ g)∗ : Hd(Sd) −→ Hd(RP d)
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is an isomorphism. Then we have ind f∗(ρd) > d. Consequently, B is not
I-trivial.

Proof. Let us consider the sequence of maps

RP d g−→ B
f−→ Sd

and the Hopf vector bundle ρd over Sd. We put α = f∗(ρd) and prove that

indα > dimα (= d). Let s and t be the generators of Hd(Sd) and H1(RP d)
respectively. We assume that (f ◦ g)∗ is an isomorphism. Then, we have

W (g∗(α)) = (f ◦ g)∗W (ρd)

= (f ◦ g)∗(1 + s)

= 1 + td

= (1 + t)d,

since d is a power of 2. Let ξ be the canonical line bundle over RP d. Since
W (ξ) = 1 + t, we have W (g∗(α) ⊗ ξ) = (1 + t + t)d = 1 by an analogous
formula to Formula III of Theorem 4.4.3 in [4]. Thus, we see that g∗(α) ⊗
ξ is orientable and the only obstruction to its non-zero cross section lies in
Hd(RP d;πd−1(S

d−1)). This obstruction vanishes, since wd(g
∗(α) ⊗ ξ) = 0

and since the mod 2 reduction Hd(RP d;Z) → Hd(RP d) is an isomorphism.
Therefore, we can decompose g∗(α) ⊗ ξ into the form 1 ⊕ β for some vector
bundle β with dimβ = d− 1. Tensoring with ξ, we have g∗(α) = ξ ⊕ (β ⊗ ξ),
so that we obtain the bundle monomorphism

ξ ↪→ g∗(α)
g−→ α.

Restricting this bundle monomorphism to the sphere bundles, we obtain a Z2-
map S(ξ)→ S(α). Since S(ξ) = Sd, we have indα ≥ d+1 and the proposition
follows. □

3. k-fold suspension for the case k = 2, 4 or 8

In this section, we consider ΣkRPn with k = 2, 4 or 8 and prove parts (2),
(4) and (8) of Theorem 1.3. We write d instead of k. If n < d, then ΣdRPn

is W-trivial by Theorem 1.2, so it is I-trivial. Therefore, we consider only the
case n ≥ d hereafter. We remark that especially in the case where n = d = 8,
ΣdRPn is seen to be not I-trivial. In fact, denoting by ξ the canonical line
bundle over RP 7, we have

Σ8RP 8 = Σ8(RP 7)ξ = (RP 7)ξ+8 = (RP 7)9ξ = RP 16
9 ,

which is not I-trivial by Theorem 1.2 of [9]. Thus the second half of (8) follows.
We prove the following theorem, which immediately leads to parts (2), (4) and
the first half of (8).

Theorem 3.1. Let d = 2, 4 or 8.

(1) If n ≥ 2d, then ΣdRPn is I-trivial.
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(2) If d ≤ n ≤ 2d− 1, then we have the following :
(a) For any vector bundle α over ΣdRPn with dimα ̸= 2d, we have

indα = dimα.
(b) For a vector bundle α over ΣdRPn with dimα = 2d, we have

indα = 2d or 2d+ 1.
(c) In the case where d = 2 or 4, there exists a vector bundle α over

ΣdRPn with dimα = 2d such that indα = 2d + 1 ; consequently,
ΣdRPn is not I-trivial.

The above theorem can be equivalently rewritten as the following two propo-
sitions.

Proposition 3.2. Let d = 2, 4 or 8 (and n ≥ d ). Let α be a vector bundle
over ΣdRPn with dimα = m.

(1) If m ̸= 2d, then we have indα = m.
(2) If m = 2d, then we have indα = m or m + 1, and in particular, we

have indα = m in the case n ≥ 2d.

Proposition 3.3. Let d = 2 or 4, and assume that d ≤ n ≤ 2d−1. Then there
exists a vector bundle α over ΣdRPn with dimα = 2d such that indα = 2d+1.

To prove Proposition 3.2, we prepare the following lemma, in which we
merely suppose that d is even and we do not necessarily require that d = 2, 4
or 8.

Lemma 3.4. Let d, n, and m be positive integers with d even. Assume that
m ≥ 2d+ 1.

(1) If m− d+ 1 is not a power of 2, we have

Hom(H̃∗(ΣdRPn), H̃∗(RPm)) = 0.

(2) If m− d+ 1 is a power of 2, we have

Hom(H̃∗(ΣdRPn), H̃∗(RPm)) ∼=

{
0 (m > n+ d),

Z2 (m ≤ n+ d),

and in the latter case, the non-zero homomorphism is non-zero only in
dimension m.

Proof. Let φ : H̃∗(ΣdRPn) → H̃∗(RPm) be a homomorphism. For a non-
negative integer r, we claim that the following three statements are true:

(i) φ(sda2
r

) = 0.
(ii) If 2r − 1 + d ̸= m and r ≥ 2, then φ(sda2

r−1) = 0.
(iii) If φ(sda2

r−1) = 0 and r ≥ 2, then φ(sdai) = 0 for 2r+1 ≤ i ≤ 2r+1−2.
We first show statement (i). To show φ(sda2

r

) = 0 for r = 0, we use the

Steenrod square Sqd. We clearly have Sqd(sda) = sdSqda = 0. On the other

hand, we have Sqd(td+1) =
(
d+1
d

)
t2d+1 ̸= 0 since d is even and 2d + 1 ≤ m.
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Therefore we obtain φ(sda) ̸= td+1, that is, φ(sda) = 0. For r ≥ 1, we also

have φ(sda2
r

) = 0 since a2
r

= Sq2
r−1

Sq2
r−2

· · ·Sq1a.
Next we show statement (ii). If 2r−1+d > m, we clearly have φ(sda2

r−1) =

0 in H̃∗(RPm) for dimensional reasons. So let 2r − 1 + d < m. We use Sq1

and the result of (i). First, we have Sq1(sda2
r−1) =

(
2r−1

1

)
sda2

r

= sda2
r

since

r ≥ 1. Secondly, we have Sq1(t2
r−1+d) =

(
2r−1+d

1

)
t2

r+d = t2
r+d ̸= 0 since d is

even, r ≥ 1 and 2r + d ≤ m. Thirdly, we have φ(sda2
r

) = 0 by statement (i).
From these, we obtain φ(sda2

r−1) ̸= t2
r−1+d, that is, φ(sda2

r−1) = 0.
Finally we show statement (iii). Let us put i − 2r + 1 = j. We note that

2 ≤ j ≤ 2r − 1. Then we have sdai = sda2
r−1+j = Sqj(sda2

r−1) since
(
2r−1

j

)
is

odd. From this, we see that φ(sdai) = 0 if φ(sda2
r−1) = 0.

Now, we are ready to prove Lemma 3.4. By statement (i), we have φ(sdai) =
0 for i = 1, 2 and also for i = 2r with r ≥ 2. First we assume that m− d+ 1 is
not a power of 2. Then, for any integer r with r ≥ 2, we have 2r − 1 + d ̸= m,
so that we have φ(sdai) = 0 for i = 2r − 1 by (ii). Hence we have φ(sdai) = 0
for i with 2r +1 ≤ i ≤ 2r+1− 2 by (iii). Thus we obtain φ(sdai) = 0 for i with
2r − 1 ≤ i ≤ 2r+1 − 2 for all r ≥ 2, and we conclude that φ = 0. This proves
part (1) of the lemma.

Next we prove part (2). Assume that m−d+1 is a power of 2, say, 2ℓ. Then
we have 2ℓ−1+d = m. Using (i), (ii) and (iii) just as in the previous argument,
we obtain φ(sdai) = 0 unless i = 2ℓ−1 or 2ℓ+1 ≤ i ≤ 2ℓ+1−2. For dimensional

reasons, we also have φ(sdai) = 0 in H̃∗(RPm) for 2ℓ + 1 ≤ i ≤ 2ℓ+1 − 2 since
m < i + d. Therefore, we obtain φ(sdai) = 0 unless i = 2ℓ − 1. In the

case where m > n + d, we have sda2
ℓ−1 = 0 in H̃∗(ΣdRPn) for dimensional

reasons, so that we conclude that φ = 0. In the case where m ≤ n + d, the

formula φ(sda2
ℓ−1) = tm actually defines the only non-zero homomorphism

from H̃∗(ΣdRPn) to H̃∗(RPm). Indeed, there is no integer i with 0 < i < 2ℓ−1
such that sda2

ℓ−1 = Sqi(sda2
ℓ−1−i) since

(
2ℓ−1−i

i

)
is even. This proves part

(2) and the proof of Lemma 3.4 is thus completed. □

Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. Let α be anm-dimensional vector bundle over ΣdRPn,
where d = 2, 4 or 8.

First, we consider the case where m < 2d. Recall that the smallest integer i
so that wi(α) is non-zero must be a power of 2. Since dimα < 2d and ΣdRPn is
d-connected, it follows that wi(α) = 0 for all i > 0, that is, W (α) = 1. Hence,
by Proposition 2.1 (and the remark after it), we obtain indα = m as required.

Next, we consider the case where m > 2d. If m− d+ 1 is not a power of 2,

we have Hom(H̃∗(ΣdRPn), H̃∗(RPm)) = 0 by Lemma 3.4, so that we obtain
indα = m as required, again by Proposition 2.1 (and the remark after it).
Assume that m−d+1 is a power of 2, say, 2ℓ. Then we claim that wm(α) = 0.
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To show this, we calculate Sqd−1w2ℓ(α) using the Wu formula [11]. We have

Sqd−1w2ℓ =
d−1∑
i=0

(
2ℓ − d+ i

i

)
wd−1−i w2ℓ+i

=

(
2ℓ − 1

d− 1

)
w2ℓ+d−1

= wm ,

where we have abbreviated wi(α) as wi. Note that wj = 0 for 0 < j ≤ d − 1

since ΣdRPn is d-connected, and also note that
(
2ℓ−1
d−1

)
is odd since d−1 < 2ℓ−2

by the assumption m > 2d. On the other hand, w2ℓ is either zero or sda2
ℓ−d,

and we have

Sqd−1(sda2
ℓ−d) =

(
2ℓ − d

d− 1

)
sda2

ℓ−1

= 0 ,

since
(
2ℓ−d
d−1

)
is even for d = 2, 4 or 8. Therefore, whether w2ℓ is zero or not, we

conclude that wm = 0. Now, let g : RPm → ΣdRPn be an arbitrary map. By

Lemma 3.4, the homomorphism g∗ : H̃∗(ΣdRPn) → H̃∗(RPm) is zero except
possibly in dimension m. Since wm(α) = 0 by the previous argument, we see
that g∗(W (α)) = 1. Therefore, by Proposition 2.1, we obtain indα = m. By
this, we have completed the proof of part (1) of Proposition 3.2.

Finally, we consider the case where m = 2d. Let g : RP 2d+1 → ΣdRPn be

an arbitrary map and let us consider the homomorphism g∗ : H̃∗(ΣdRPn) →
H̃∗(RP 2d+1). When d = 4 or 8, we have

Hom(H̃∗(ΣdRPn), H̃∗(RP 2d+1)) = 0

by Lemma 3.4 since (2d + 1) − d + 1 is not a power of 2. Hence g∗ is the
zero homomorphism for d = 4, 8. When d = 2, g∗ is zero except possibly
in dimension 2d + 1, by Lemma 3.4. Since dimα = 2d, we obviously have
w2d+1(α) = 0. Therefore we have g∗(W (α)) = 1 for d = 2. Thus we have
g∗(W (α)) = 1 for d = 2, 4 or 8, so that we can conclude that indα ≤ 2d+1 by
Proposition 2.1. The first half of (2) of Proposition 3.2 is thus obtained. □

Now we assume that n ≥ 2d in addition to m = 2d. Since ΣdRPn is d-
connected and the smallest integer i so that wi(α) ̸= 0 is a power of 2, the
only Whitney class which is possibly non-zero is w2d(α). Thus we can write as
W (α) = 1 + w2d(α). Here we claim that the following is true:

Assertion 3.5. Let d = 2, 4 or 8, and assume that n ≡/ 0, 6, 7 mod 8 when
d = 2. Then we have either W (β) = 1 or W (β) = 1 +

∑n
i=1 s

daid for any
vector bundle β over ΣdRPn.
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Clearly we have sdad ̸= 0 and sda2d ̸= 0 since n ≥ 2d. Hence, admitting
that Assertion 3.5 is true, we obtain W (α) ≡ 1 + w2d(α) = 1 when d = 4
or 8. When d = 2, we also have W (α) ≡ 1 + w4(α) = 1 at least for n = 4.
For n > 4, let us consider the inclusion map i : Σ2RP 4 ↪→ Σ2RPn. Since
i∗ : H4(Σ2RPn) → H4(Σ2RP 4) is injective, we have W (α) ≡ 1 + w4(α) = 1
also for n > 4 from the result for n = 4. Thus we have W (α) = 1 for d = 2, 4
or 8, so that we can conclude that indα = dimα by Proposition 2.1 (and the
remark after it). Therefore the proof of Proposition 3.2 is complete if we prove
Assertion 3.5.

Proof of Assertion 3.5. Since the cup product is trivial in H̃∗(ΣdRPn), we
have W (2β) = 1 for any vector bundle β over ΣdRPn, using the Whitney

sum formula. According to the results of Fujii [3], we know that K̃O(Σ2RPn)

is isomorphic to Z2 if n ≡/ 0, 6, 7 (mod 8), and also that K̃O(Σ4RPn) and

K̃O(Σ8RPn) are cyclic groups of order a power of 2. Therefore, in these
cases, there are at most two types of W (β), one of which is W (β) = 1. As
is shown in the proof of [10, Proposition 3.1], there exists β such that W (β) =
1 +

∑n
i=1 s

daid. Thus the assertion follows and the proof of Proposition 3.2 is
completed. □

Now we proceed to prove Proposition 3.3.

Proof of Proposition 3.3. In view of Proposition 2.2 and part (2) of Proposition
3.2, it suffices to prove the following lemma. □

Lemma 3.6. Let d = 2 or 4, and assume that d ≤ n ≤ 2d − 1. Then there
exist maps f : ΣdRPn → S2d and g : RP 2d → ΣdRPn such that

(f ◦ g)∗ : H2d(S2d) −→ H2d(RP 2d)

is an isomorphism.

Proof. First we take, as f : ΣdRPn → S2d, the following composition:

ΣdRPn ↪→ ΣdRP 2d−1 j→ ΣdRP 2d−1
d = Σd(RP d−1)dξ

h→
≈

Σd(RP d−1)d

q→ Σd(pt)d = S2d,

where j is the map collapsing the (2d− 1)-skeleton, and q is the map induced
from the constant map RP d−1 → pt, while h is the map obtained from the fact
that dξ is isomorphic to the d-dimensional trivial bundle over RP d−1. Then,
it is easy to see that f∗ : H2d(S2d)→ H2d(ΣdRPn) is an isomorphism.

Next, as g : RP 2d → ΣdRPn, we take the following composition:

RP 2d j′→ RP 2d
d+1 = (RP d−1)(d+1)ξ h′

→
≈

(RP d−1)ξ+d

= Σd(RP d−1)ξ

= ΣdRP d ↪→ ΣdRPn,
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where j′ is the map collapsing the d-skeleton, and h′ is the map obtained from
the fact that dξ is isomorphic to the d-dimensional trivial bundle over RP d−1.
Then, it is immediate that g∗ : H2d(ΣdRPn)→ H2d(RP 2d) is an isomorphism.
This completes the proof of Lemma 3.6. □

Remark. Since 8ξ is isomorphic to the 8-dimensional trivial bundle over RP 7,
the above lemma is also true for d = 8. However, Proposition 2.2 is not true
for d = 16, which is the reason why we cannot apply the same argument as in
Proposition 3.3 to the case d = 8.

4. k-fold suspension for the case k = 3, 5, 6 or 7

In this section, we consider ΣkRPn with k = 3, 5, 6 or 7 and prove parts (3),
(5), (6), and (7) of Theorem 1.3.

First, let us consider the case k = 7. By Theorem 1.2, Σ7RPn is not I-trivial
only if n = 1. Since Σ7RP 1(= S8) is not I-trivial, part (7) of Theorem 1.3 is
obvious.

Next, we consider the cases k = 5 and k = 6. By Theorem 1.2, Σ5RPn is
not I-trivial only if n = 3, and Σ6RPn is not I-trivial only if n = 2, 3. Thus,
parts (5) and (6) of Theorem 1.3 follow from the following proposition.

Proposition 4.1.

(1) Σ5RP 3 is not I-trivial.
(2) Σ6RPn is not I-trivial for n = 2 or 3.

Proof. Since RP 3 is S-reducible and since the suspension map Σ∞ : [S5,Σ2RP 3]
→ {S3,RP 3} is surjective, we see that Σ2RP 3 is reducible. Hence Σ5RP 3 is
also reducible, so that there exists a map g : S8 → Σ5RP 3 such that the
composite

S8 g−→ Σ5RP 3 f−→ S8

is homotopic to the identity map. Here f is the map which collapses the 7-
skeleton. As in the proof of Proposition 2.2, we consider the vector bundle α =
f∗(ρ), where ρ is the Hopf vector bundle over S8. Since g∗(α) = id∗(ρ) = ρ, we
obtain a Z2-map S15 = S(ρ)→ S(α) by restricting the bundle monomorphism
g : ρ → α to the sphere bundles. Therefore we have indα ≥ 16. Since
dimα = 8, it follows that Σ5RP 3 is not I-trivial and part (1) of the proposition
is obtained.

Next let n = 2 or 3, and consider Σ6RPn. We use Proposition 2.2. As a
map f : Σ6RPn → S8, when n = 2, we take the quotient map which collapses
the 7-skeleton. When n = 3, we take the composite map

Σ6RP 3 → S8 ∪ e9 ≃ S8 ∨ S9 → S8,

where the first map collapses the 7-skeleton and the last map is the projection.
As a map g : RP 8 → Σ6RPn, when n = 2, we take the composite map

RP 8 → S7∪2e8 ≈ Σ6RP 2,
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where the first map collapses the 6-skeleton. When n = 3, we take the com-
posite of this map with the inclusion i : Σ6RP 2 ↪→ Σ6RP 3. Taking f and g
as above, f∗ : H8(S8) → H8(Σ6RPn) and g∗ : H8(Σ6RPn) → H8(RP 8) are
both isomorphisms. Therefore, part (2) of the proposition is obtained from
Proposition 2.2. □

Finally, in this section, we consider Σ3RPn, the case k = 3. By Theorem 1.2,
Σ3RPn is not I-trivial only if n = 1, 5. Clearly Σ3RP 1(= S4) is not I-trivial,
and thus part (3) of Theorem 1.3 is obvious. It is still open whether Σ3RP 5 is
I-trivial or not. However, we have a partial result as follows.

Proposition 4.2.

(1) Let α be a vector bundle over Σ3RP 5 with dimα = m.
(a) If m ̸= 8, 9, then we have indα = m.
(b) If m = 8 or 9, then we have m ≤ indα ≤ 10.

(2) Σ3RP 5 is not I-trivial if and only if there exists a map g : RP 8 →
Σ3RP 5 such that g∗ : H8(Σ3RP 5)→ H8(RP 8) is an isomorphism.

Proof. By Proposition 2.1 (and the remark after it), part (1) of the proposition
immediately follows from the following two assertions:

(i) If m < 8, we have W (α) = 1.

(ii) If m ≥ 10, we have Hom(H̃∗(Σ3RP 5), H̃∗(RPm)) = 0.

We show that these assertions are true. Since Σ3RP 5 is 3-connected, we have
wi(α) = 0 for 0 < i < 4. Hence, by Lemma 3.3 of [10], we have Sq1w4(α) = 0.
On the other hand, we have Sq1(s3a) ̸= 0. Therefore we obtain w4(α) ̸= s3a,
that is, w4(α) = 0. Since the smallest integer k so that wk(α) ̸= 0 is a power
of 2, it follows that wi(α) = 0 for i < 8 and assertion (i) follows. Assume that

m ≥ 10 and let φ : H̃∗(Σ3RP 5)→ H̃∗(RPm) be an arbitrary homomorphism.
Since Sq4(s3a) = 0 and Sq4t4 = t8 ̸= 0, we obtain φ(s3a) ̸= t4, that is,
φ(s3a) = 0. Similarly, since Sq4(s3a3) = 0 and Sq4t6 = t10 ̸= 0, we obtain
φ(s3a3) = 0. Since s3a2 = Sq1(s3a), s3a4 = Sq1(s3a3) and s3a5 = Sq2(s3a3),
we see that φ(s3aj) = 0 for all j (1 ≤ j ≤ 5), so that assertion (ii) follows.

Next we prove part (2) of the proposition. The “if” part is immediate
from Proposition 2.2, taking as f : Σ3RP 5 → S8 the map which collapses
the 7-skeleton. Suppose that Σ3RP 5 is not I-trivial, and let α be a vector
bundle over Σ3RP 5 such that indα > dimα. We put m = dimα. Then m
must be either 8 or 9 by part (1). From Proposition 2.1, there exists a map
g : RPm → Σ3RP 5 such that g∗(W (α)) ̸= 1. Here, we recall that we have
wi(α) = 0 for i < 8. Also, we have w9(α) = 0 for dimensional reasons. Thus,
we see that g∗(w8(α)) = t8. Therefore, when m = 8, g is the desired map.
When m = 9, the composite of g and the inclusion RP 8 ↪→ RP 9 gives the
desired map. This proves the “only if” part, and the proof is complete. □
Remark. It is easy to see that

Hom(H̃∗(Σ3RP 5), H̃∗(RP 8)) ∼= Z2
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and its only non-zero homomorphism φ is given by

φ(s3aj) =

{
tj+3 (j = 3, 5),

0 (j ̸= 3, 5).

Proposition 4.2 implies that this homomorphism is realizable by a map if and
only if Σ3RP 5 is not I-trivial.

5. k-fold suspension for k = 1

In this section, we consider ΣRPn and prove part (1) of Theorem 1.3, that
is, the following proposition.

Proposition 5.1. ΣRPn is not I-trivial for n = 1, 2 or 3.

Proof. The proposition is clearly true when n = 1 since ΣRP 1 = S2. By
Theorem 1.2 of [8], it is also true when n = 2. Furthermore, there is a 3-
dimensional bundle α3 over ΣRP 2 such that indα3 = 4 (see [8, Theorem 4.1]).
Let

S3 p−→ ΣRP 2 i−→ ΣRP 3

be the standard cofibration and let us consider the exact sequence

[S3, BO(3)]
p∗

←− [ ΣRP 2, BO(3)]
i∗←− [ ΣRP 3, BO(3)].

Since [S3, BO(3)] ∼= π2(O(3)) = 0, i∗ is surjective. Hence, we can take β ∈
[ ΣRP 3, BO(3)] so that i∗β = α3. Then we have indβ ≥ ind i∗β = 4, which
implies that ΣRP 3 is not I-trivial. □

It is still open for n ≥ 4 whether ΣRPn is I-trivial or not. For a positive
integer m, let λ(m) denote the largest integer r such that 2r ≤ m. We have
the following proposition.

Proposition 5.2. Let n,m be positive integers and let α be a vector bundle over
ΣRPn with dimα = m. Then we have indα = m unless n ≤ m < 2λ(n+1)+1.
When n ̸= 3, 7, we also have indα = m for n = m.

The following lemma, which is an analogue of Lemma 3.4, shows that indα =
m if m ≥ 2λ(n+1)+1.

Lemma 5.3. For positive integers n and m, we have

Hom(H̃∗(ΣRPn), H̃∗(RPm)) ∼=

{
0 (m ≥ 2λ(n+1)+1),

Z2 (m < 2λ(n+1)+1).

In the latter case, the non-zero homomorphism is non-zero only in dimension
2λ(m).

Proof. Let φ : H̃∗(ΣRPn) → H̃∗(RPm) be a homomorphism. We put λ(n +
1) = r and λ(m) = ℓ, that is, 2r ≤ n + 1 < 2r+1 and 2ℓ ≤ m < 2ℓ+1. The
lemma follows from the following two assertions:

(i) If i+ 1 is not a power of 2, then φ(sai) = 0.



262 RYUICHI TANAKA

(ii) If i+ 1 = 2j and j ̸= ℓ, then φ(sai) = 0.

In fact, from (i) and (ii) we have φ(sai) = 0 unless i = 2ℓ−1. In the case where

m ≥ 2r+1, we have n+1 < 2r+1 ≤ 2ℓ, so that we have sa2
ℓ−1 = 0 in H̃∗(ΣRPn)

for dimensional reasons. Therefore we obtain φ = 0 in this case. In the case

where m < 2r+1, we have 2ℓ ≤ 2r ≤ n + 1, and the formula φ(sa2
ℓ−1) = t2

ℓ

actually defines a homomorphism from H̃∗(ΣRPn) to H̃∗(RPm), since there

is no integer i with 0 < i < 2ℓ − 1 such that sa2
ℓ−1 = Sqi(sa2

ℓ−1−i). Thus the
lemma follows from assertions (i) and (ii).

Now we prove assertions (i) and (ii). Let us write i + 1 = 2j + k with

0 < k < 2j . Then we have φ(sai) = φ(Sqk(sa2
j−1)) = Sqk(φ(sa2

j−1)), since(
2j−1
k

)
is odd. Here, if φ(sa2

j−1) = 0, we clearly have φ(sai) = 0, while if

φ(sa2
j−1) = t2

j

, we have φ(sai) = Sqk(t2
j

) = 0, since
(
2j

k

)
is even. Therefore,

whether φ(sa2
j−1) is zero or not, we obtain φ(sai) = 0. Thus assertion (i)

follows.
Next, let i + 1 = 2j and j ̸= ℓ. In the case where j ≥ ℓ + 1, we have

φ(sa2
j−1) = 0 in H̃∗(RPm) for dimensional reasons. In the case where j ≤ ℓ−1,

we have Sq2
j

(t2
j

) = t2
j+1 ̸= 0, since j + 1 ≤ ℓ. On the other hand, we

obviously have Sq2
j

(sa2
j−1) = 0. From these, we obtain φ(sa2

j−1) ̸= t2
j

, that

is, φ(sa2
j−1) = 0 also in this case. Thus assertion (ii) follows and the proof of

the lemma is complete. □

Proof of Proposition 5.2. When m ≥ 2λ(n+1)+1, we have indα = m by the
above lemma, using Proposition 2.1 (and the remark after it). To show that
indα = m when m < n, we investigate possibilities of types of Stiefel–Whitney
classes just like Assertion 3.5. By [3, Theorem 1], we have

K̃O(ΣRPn) ∼=

{
Z+ Z2 if n ≡ 3 mod 4,

Z2 if n ≡/ 3 mod 4.

Moreover, when n ≡ 3 (mod 4), we have the following exact sequence:

0←− K̃O(ΣRPn−1)
i∗←− K̃O(ΣRPn)

j∗←− K̃O(Sn+1) = Z←− 0.

Recall that Sn+1 is W-trivial if n ̸= 1, 3, 7 (see [5]). Since the cup product is

trivial in H̃∗(ΣRPn), we see that there are at most three types of non-trivial
Stiefel–Whitney classes if n = 3 or 7, while there is at most one type if n ̸= 3, 7.
On the other hand, by [10, Proposition 3.1], there is a vector bundle over ΣRPn

whose Stiefel–Whitney class is 1 +
∑n

i=1 sa
i. It follows that the possibilities

are 1 + san, 1 +
∑n

i=1 sa
i and 1 +

∑n−1
i=1 sai when n = 3 or 7, while the only

possibility is 1 +
∑n

i=1 sa
i when n ̸= 3, 7.

Now, we show that indα = m when m < n. Since m < n, we have wi(α) = 0
for i = n and i = n+1, for dimensional reasons. From the above possibilities of
Stiefel–Whitney classes, we must have W (α) = 1, so that we obtain indα = m.
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Likewise, we obtain indα = m when m = n and n ̸= 3, 7. This completes the
proof. □
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