• 제목/요약/키워드: Sperm Nucleus

검색결과 110건 처리시간 0.023초

숭어(Mugil cephalus) 정자의 냉장.냉동보존 (Gold Storage and Cryopreservation of Grey Mullet(Mugil cephalus) Sperm)

  • 장영진;최윤희;임한규;고강희
    • 한국양식학회지
    • /
    • 제12권1호
    • /
    • pp.57-62
    • /
    • 1999
  • 숭어 정액의 냉장 및 냉동보존시 적합한 희석액을 선정하고, 알에 대한 수정률을 평가하였다. 비보존 숭어 정자의 머리는 공모양으로 직경 $1.26{\pm}0.08 \{mu}textrm{m}$, 길이 $1.06{\pm}0.07 \{mu}textrm{m}$ 였으며, 과립상의 염색질을 가지고 있었다. 숭어 정자의 냉장보존시($0^{\circ}C$, 10일간) 희석액으로는 동종의 혈정이 가장 높은 정자활성을 나타냈으며, egg-tris, 0.1M, 0.3M 및 0.5M glucos에서는 활성이 서로 비슷하였다. 또한 동해방지제로 10% DMSO, 희석액으로 MFRS를 사용하여 냉동보존한 후 해동시켰을 때 대조구와 유사한 수정률을 보였다. 냉동보존 후 해동시킨 일부 정자 중에서는 세포막이 이탈되거나 소실되는 구조적 변화를 나타냈다.

  • PDF

한국산(韓國産) 플라나리아(Dugesia japonica Ichikawa et Kawakatsu)생식기관(生殖器官)의 미세구조(微細構造)에 관(關)한 연구(硏究) (A Study on the Ultrastructure of Reproductive Organ of Korean Planaria (Dugesia japonica))

  • 장남섭;김우갑
    • Applied Microscopy
    • /
    • 제15권1호
    • /
    • pp.31-58
    • /
    • 1985
  • The morphological study on different types of cells of reproductive organ including spermatogenesis in the adult planaria was performed to observe their cytochemical and ultrastructural characteristics. 1. Spermatogenesis The circular luminated material appears immediately inside the nuclear envelope of early spermatid and is found also in the nucleus of sperm, but typical acrosomal structures cannot be observed. Approximately ten of small-sized mitochondria occur around the nucleus in the transitional phase from primary spermatocyte to secondary spermatocyte, but in sperm a long mitochondrion is closely associated with nucleus, parellel to long axis of it. The sperm has a relatively long head connected with two tails via hollow neck. 2. Reproductive organ The penis bulb and the bursa stalk were observed. (1) Penis bulb The cells constituted penis bulb are classified into six types on the basis of ultrastructure of the cells and cytochemistry of the cytoplasmic granules. 1) A-type cells: These cells exhibiting low electron density are mainly occupied by large nucleus. These cells possess two different types of granules: highly electron-dense round granules with an average size of $0.9{\mu}m$, and electron-dense granules exhibit PAS-positive reaction. 2) B-type cells contain PAS-positive granules with the size of about $0.4{\mu}m$. They are rich in free ribosomes and mitochondria. 3) C-type cells are found to be dark cells due to high electron-density. These cells are largely occupied by large nucleus. 4) D-type cells: These cells are seen as light cells which have poorly developed cell organelles. 5) E-type tells: These cells contain a large number of glycogen granules which occupy most of cell. 6) F-type cells: These arc parietal epidermal cells surrounding the genital antrum. These cells are characterized by their finger-like shapes and the presence of a number of electron-dense, irregularly-shaped structures inside cells. The relatively large electron-lucent granules can be also found. The F-type cells possess numerous microvilli on their free surfaces. (2) Bursa stalk The cells constituted bursa stalk are classified into 3 types on the basis of cell shapes and presences of electron-dense or electron-lucent granules. 7) G-type cells with a long cytoplasmic process. They have large nuclei and poorly developed cell organelles. 8) H-type cells: These cells are characterized by the presence of a long cytoplasmic process and relatively highly electron-dense cytoplasmic profile. They have poorly developed cell organelles. 9) I-type cells contain large electron-lucent granules which exhibit negative reactions with three kinds of cytochemical staining methods used in this experiment. The fine electron-dense structures can be found inside these granules.

  • PDF

Xiphophorus maculatus의 정자형성과정에 관한 미세구조 (An Ultrastructural Study on the Spermatogenesis of Xiphophorus maculatus)

  • 김동희;류동석;등영건
    • Applied Microscopy
    • /
    • 제33권4호
    • /
    • pp.267-274
    • /
    • 2003
  • 난태생 어류인 성숙한 Xiphophorus maculatus의 정소를 적출하여 정자형성과정과 정자의 미세구조를 전자현미경으로 관찰하였다. 정자형성과정은 정소낭(testicular cyst)에서 이루어지며, 각 정소낭 내에 동일한 분화시기의 생식세포가 분포하고 있었다. 정원세포는 타원형으로 핵 내에 뚜렷한 인을 보유하고 있었고 세포질에는 미토콘드리아의 발달이 현저하였다. 제1정모세포는 원형으로 정원세포보다 크기가 작았고 인은 발달되어 있지 않았으며, 제2정모세포는 제1정모세포보다 더 작아졌고 핵의 전자밀도는 더 높았다. 정세포의 초기발달시기에는 세포의 크기가 정모세포보다 작았고 염색질의 응축은 핵막 쪽에서 뚜렷하여 전자밀도가 높았으며 편모가 형성되기 시작하였고 미토콘드리아는 핵 주변에 분포하였다. 정자완성과정 중기에는 핵의 염색질 응축이 뚜렷하였으며 핵은 세포질 한쪽에 치우쳐 있었고, 미토콘드리아는 편모 주변에 집중되었으며 핵은 구형을 이루고 있었다. 완전히 성숙한 정자의 두부형태는 장원추형이었고 두부에서 첨체는 관찰되지 않았으며 편모의 미세소관 배열은 9+2구조를 이루고 있었다. 또한 정자의 꼬리 끝에는 고리형태의 구조물 보유하고 있었다.

Hoechst 33258 Staining을 이용한 웅성 생쥐 성세포의 간편 분류 (Simple Classification of Male Mouse Germ Cells using Hoechst 33258 Staining)

  • 김경국;박영식
    • 한국수정란이식학회지
    • /
    • 제30권3호
    • /
    • pp.213-218
    • /
    • 2015
  • In the study for a differentiation and development of spermatogonial cells, the researchers should commonly require a simple, fast and reasonable method that could evaluate the developmental stage of male germ cells without any damage and also relentlessly culture them so far as a cell stage aiming at experimental applications. For developing the efficient method to identify the stage of sperm cells, the morphological characteristics of sperm cells were investigated by staining the cells with blue fluorescent dye Hoechst 33258, and a criterion for male germ cell classification was elicited from results of the previous investigation, then the efficiency of the criterion was verified by applying it to assort the germ cells recovered from male mice in age from 6 to 35 days. As morphological characteristics, spermatogonia significantly differed from spermatocytes in size, appearance and fluorescent patches of nucleus, and spermatids could also be distinguished from spermatozoa by making a difference in the volume and shape of nucleus and the shape and fluorescence of tail. Aforesaid criterion was applicable for classifying in vitro cultured sperm cells by verifying its efficiency and propriety for assorting the stages of testicular germ cells. However, the fluorescent staining showed that germ cells in mouse testis should be dramatically differentiated and developed at 21 days and 35 days of age, which were known as times of sexual puberty and maturity in male mice, respectively. In conclusion, the results indicated that this simple criterion for sperm cell classification using fluorescence staining with Hoechst 33258 may be highly efficient and reasonable for spermatogenesis study.

기수산 2배체 재첩, Corbicula japonica(Bivalvia: Corbiculidae)의 정자형성과정 및 정자의 미세구조적 특징 (Spermatogenesis and Ultrastructural Characteristics of Spermatozoa of Brackish Water Diploid Clam, Corbicula japonica (Bivalvia: Corbiculidae))

  • 전제천;김봉석;정의영;김진희;박갑만;박성우
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권2호
    • /
    • pp.115-122
    • /
    • 2009
  • 기수산 2배체 일본재첩(Corbicula japonica)의 정자형성과정 및 정자의 미세 구조적 특징을 전자현미경 관찰에 의해 조사하였다. 세포학적 조사 결과, 기수산 2배체인 일본재첩의 정자 길이는 약 55${\mu}m$이다. 정자 두부(길이 약 12${\mu}m$)는 길게 신장되어 있으며 약간 구부러져 있다. 정핵 길이는 7.90 ${\mu}m$, 첨체 길이는 약 2.70 ${\mu}m$이다. 정자의 핵과 첨체의 형태는 각각 긴 화살 모양과 길다란 원추 모양을 나타낸다. 본 종(체외수정, 자웅이체, 난생종)의 정자 두부는 이미 몇몇 저자들에 의해서 보고된 3배체 재첩류(체내수정, 자웅동체, 난태생종)의 정자 두부에서 나타나는, 원시형으로부터 부분적으로 변형된 형태를 나타내고 있다. 그러나 부분적으로 변형된 2개의 편모가 있는 정자를 가지는 담수산 3배체인 자웅동체 조개류와 달리 한 개의 편모를 갖는 정자를 본 종은 생산한다. 2배체 일본재첩은 중심체를 둘러싸는 4개의 미토콘드리아를 가지고 있어, 짧은 중편을 가지는 다른 이매패류의 것들과 유사하다. 정자 미부 편모의 약소님은 중앙에 1쌍의 미세소관과 주변에 9쌍의 미세소관으로 구성되어 있다. 정자 미부의 악소님은 9+2구조를 가지며, 횡절단된 한 개의 편모를 갖는 정자에서 특히, 체외수정 어류들에서 나타는 날개 모야으이 악소님 lateral fin들이 관찰되었다.

  • PDF

Ultrastructures of Germ Cells and the Accessory Cells During Spermatogenesis in Male Gomphina veneriformis (Bivalvia: Veneridae) on the East Sea of Korea

  • Chung, Ee-Yung;Chung, Chang-Ho;Kim, Jin-Hee;Park, Sung-Woo;Park, Kwan-Ha
    • 한국패류학회지
    • /
    • 제26권1호
    • /
    • pp.51-62
    • /
    • 2010
  • The ultrastructures of germ cells and the accessory cells during spermatogenesis and mature sperm ultrastructure in male Gomphina veneriformis, which was collected on the coastal waters of Yangyang, East Sea of Korea, were investigated by transmission electron microscope observations. The morphology of the spermatozoon has a primitive type and is similar to those of other bivalves in that it contains a short midpiece with four mitochondria surrounding the centrioles. Accessory cells are observed to be connected to adjacent germ cells, they contain a large quantity of glycogen particles and lipid droplets in the cytoplasm. Therefore, it is assumed that they are involved in the supplying of the nutrients for germ cell development, while any phenomena associated with phagocytosis of undischarged, residual sperms by lysosomes in the cytoplasm of the accessory cells after spawning was not observed in this study. The morphologies of the sperm nucleus type and the acrosome shape of this species have a cylindrical and modified long cone shape, respectively. In particular, the axial filaments in the lumen of the acrosome, and subacrosomal granular materials are observed in the subacrosomal space between the anterior nuclear fossa and the beginning part of axial filaments in the acrosome. The spermatozoon is approximately $50-55{\mu}m$ in length including a long sperm nucleus (about $7.80{\mu}m$ in length), an acrosome (about $1.13{\mu}m$ in length) and tail flagellum ($40-45{\mu}m$). The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9+2 structure. Some charateristics of sperm morphology of this species in the family Veneridae are (1) acrosomal morphology, (2) the number of mitochondria in the midpiece of the sperm,. The axial filament appears in the acrosome as one of characteristics seen in several species of the family Veneridae in the subclass heterodonta, unlikely the subclass pteriomorphia containing axial rod instead of the axial filament. As some characteristics of the acrosome structures, the peripheral parts of two basal rings show electron opaque part (region), while the apex part of the acrosome shows electron lucent part (region). These charateristics belong to the family Veneridae in the subclass heterodonta, unlikely a characteristic of the subclass pteriomorphia showing all part of the acrosome being composed of electron opaque part (region). Therefore, it is easy to distinguish the families or the subclasses by the acrosome structures. The number of mitochondria in the midpiece of the sperm of this species are four, as one of common characteristics appeared in most species in the family Veneridae.

Spermiogenesis and Taxonomical Values of Sperm Ultrastructures in Male Crassostrea ariakensis (Fujita & Wakiya, 1929) (Pteroirmorphia: Ostreidae) in the Estuary of the Seomjin River, Korea

  • Son, Pal Won;Chung, Jae Seung;Kim, Jin Hee;Kim, Sung Han;Chung, Ee-Yung
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권3호
    • /
    • pp.179-186
    • /
    • 2014
  • Characteristics of the developmental stages of spermatids during spermiogenesis and phylogenetic classicfication of the species using sperm ultrastructures in male Crassostrea ariakensis were investigated by transmission electron microscope observations. The morphology of the spermatozoon of this species has a primitive type and is similar to those of Ostreidae. Ultrastructures of mature sperms are composed of broad, modified cap-shaped acrosomal vesicle and an axial rod in subacrosomal materials on an oval nucleus, four spherical mitochondria in the sperm midpiece, and satellite fibres which appear near the distal centriole. The axoneme of the sperm tail shows a 9+2 structure. Accordingly, the ultrastructural characteristics of mature sperm of C. ariakensis resemble to those of other investigated ostreids in Ostreidae in the subclass Pteriomorphia. In this study, particularly, two transverse bands (stripes) appear at the anterior region of the acrosomal vesicle of this species, unlike two or three transverse bands (stripes) in C. gigas. It is assumed that differences in this acrosomal substructure are associated with the inability of fertilization between the genus Crassostrea and other genus species in Ostreidae. Therefore, we can use sperm ultrastructures and morphologies in the resolution of taxonomic relationships within the Ostreidae in the subclass Pteriomorphia. These spermatozoa, which contain several ultrastructures such as acrosomal vesicle, an axial rod in the sperm head part and four mitochondria and satellite fibres in the sperm midpiece, belong to the family Ostreidae in the subclass Pteriomorphia.

Magnetic Orientations of Bull Sperm Separated into Head and Flagellum Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kurnianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권2호
    • /
    • pp.167-175
    • /
    • 2000
  • This paper describes the magnetic orientation of bull sperm separated into the head and the flagellum treated by DTT or heparin in a 5,400G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4^{\circ}C$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the head area at 1, 3 and 6 days. After measuring the area, each sample was exposed to a 5,400G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the sperms were separated into the head and the flagellum through the DTT treatment. Almost of the separated heads showed that their long axis oriented perpendicularly to the magnetic lines of force, and most of the long axis perpendicularly oriented heads showed that their flat plane oriented perpendicularly in a 5,400G magnetic field. Also, the demembranation of the head tended to increase those perpendicular orientations, while those perpendicular orientations of the head declined with the decondensation of the sperm nuclei. These findings suggest that strong magnetic anisotropy for the perpendicular orientation of the long axis and the flat plane of the head occurs in the sperm nuclei in a 5,400G magnetic field. The separated flagellum showed lower parallel orientation, and the separated and demembranated flagellum showed parallel orientation to the magnetic lines of force in this magnetic field. These findings suggest that weak magnetic anisotropy of the parallel orientation of the flagellum occurs in the inside components in a 5,400G field.

Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae)

  • Shim, Eunyoung;Park, Hana;Im, Soo Hyun;Zuccarello, Giuseppe C.;Kim, Gwang Hoon
    • ALGAE
    • /
    • 제35권4호
    • /
    • pp.389-404
    • /
    • 2020
  • Red algal fertilization is unusual and offers a different model to the mechanism of intracellular transport of nuclei and polyspermy blocking. A female carpogonium (egg) undergoes plasmogamy with many spermatia (sperm) simultaneously at the receptive structure, trichogyne, which often contains numerous male nuclei. The pattern of selective transport of a male nucleus to the female nucleus, located in the cell body of the carpogonium, remain largely unknown. We tracked the movement of spermatial nuclei and cell organelles in the trichogyne after plasmogamy using time-lapse videography and fluorescent probes. The fertilization process of Bostrychia moritziana is composed of five distinctive stages: 1) gamete-gamete binding; 2) mitosis in the attached spermatia; 3) formation of a fertilization channel; 4) migration of spermatial nuclei into the trichogyne; and 5) cutting off of the trichogyne cytoplasm from the rest of the cell after karyogamy. Our results showed that actin microfilaments were involved in the above steps of fertilization, microtubules are involved only in spermatial mitosis. Time-lapse videography showed that the first ("primary") nucleus which entered to trichogyne moved quickly to the base of carpogonium and fused with the female nucleus. The transport of the primary male nucleus to the egg nucleus was complete before its second nucleus migrated into the trichogyne. Male nuclei from other spermatia stopped directional movement soon after the first one entered the carpogonial base and oscillated near where they entered trichogyne. The cytoplasm of the trichogyne was cut off at a narrow neck connecting the trichogyne and carpogonial base after gamete nuclear fusion but gamete binding and plasmogamy continued on the trichogyne. Spermatial organelles, including mitochondria, entered the trichogyne together with the nuclei but did not show any directional movement and remained close to where they entered. These results suggest that polyspermy blocking in B. moritziana is achieved by the selective and rapid transport of the first nucleus entered trichogyne and the rupture of the trichogyne after gamete karyogamy.

소금쟁이의 尖體形成 (Acrosome Morphogenesis in Gerris paludum (Heteroptera))

  • Lee, Young-Hwan;Lee, Chang-Eon
    • 한국동물학회지
    • /
    • 제24권2호
    • /
    • pp.65-75
    • /
    • 1981
  • Gerris paludum의 精子形成 동안의 尖體形成에 대한 연구를 요약하면 다음과 같다. 1. Golgi體는 精母細胞의 초기단계에서 細胞質에 산재되어 있다가 서로 융합하여 囊 胚形을 하며 이들이 모여서 감수분열 전기에는 몇 개의 큰 Golgi體群을 형성하는데, 이들은 결국 精細胞에 균등히 분포된다. 2. 精子完成에서 acroblast는 처음에 하나의 큰 胞로 나타나다가, 그 내부에서 尖體顆粒이 分化된 후, acroblast는 顆粒에서 分離되어 결국 tail filament를 따라 사라진다. 3. 尖體는 mitochondrial derivatives의 반대편인 核 전면부로 이동한 후, two zones 즉 core와 sheath로 分化된다. 4. Basal bodies와 tip은 모두 sheath에서 由來한다. Basal bodies는 sheath의 基部에서 발생해서 尖體가 伸長되고 좁아짐에 따라 점차로 尖體의 基部를 싸기 시작하여 결국 완전히 둘러싸게 되며, 分化된 tip은 core의 前端部에 인접해서 나타나지만 sheath와 뚜렷이 연결되어 있다. 5. 分化된 tip은 basal bodies보다 앞서서 伸長한다. Basal bodies는 精細胞 후기에 하나의 顆粒으로 융합하지 않고 서로 연결된 wtin-tubes로 나타나며, sperm bundle에서는 basal bodies group을 형성한다.

  • PDF