• Title/Summary/Keyword: Speed of sound

Search Result 743, Processing Time 0.034 seconds

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Experiments on the noise source identification from a moving vehicle (이동하는 운송체의 외부소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.238-243
    • /
    • 2008
  • Several experimental techniques for identifying the noise sources distributed over a moving vehicle have been developed recently and are used to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car passing by. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured acoustic signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

Drumming bioacoustics of woodpeckers in South Korea (한국에 서식하는 딱다구리목 드러밍의 생물음향학적 특성 연구)

  • Ki, Kyong-Seok;Hong, Suk-Hwan;Gim, Ji-Yeun
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.4
    • /
    • pp.404-410
    • /
    • 2014
  • In this study, we conducted an analysis of the drumming bioacoustics of three woodpeckers typical to South Korea. The targeted species were, from largest to smallest in size, the Black Woodpecker(Dryocopus martius), the Great Spotted Woodpecker(Dendrocopos major) and the Japanese Pygmy Woodpecker(Dendrocopos Kizuki). The drumming sounds of these three species of woodpeckers were recorded and analyzed. Sound recordings were taken in the Guryongsa Valley, Chiaksan National Park and on the campus of Sangji University, Wonju City, South Korea. Drumming recordings were obtained in the following manner. As researchers walked along trails in the investigation areas, when woodpecker drumming sounds were indicated, positive identification of the species was made using binoculars then the recording of the drumming sound was started. The average time per drumming, in seconds, was Black Woodpecker(D. martius) 1.614 seconds, Great Spotted Woodpecker(D. major) 0.683 seconds and Japanese Pygmy woodpecker(D. Kizuki) 0.200 seconds. The average number of strikes for each drumming was Black Woodpecker(D. martius) 31.2 times, Great Spotted Woodpecker(D. major) 14.9 times and Japanese Pygmy Woodpecker(D. Kizuki) 6.7 times. The strike speed, in strikes/sec, for each species was the Black Woodpecker(D. martius)19.3strikes/sec, the Great Spotted Woodpecker(D. major) 21.8strikes/sec and Japanese Pygmy Woodpecker(D. Kizuki)33.3strikes/sec. The frequency of drumming, in Hertz, was Black Woodpecker(D. martius) 776.9Hz, Great Spotted Woodpecker (D. major) 1,213.8Hz and Japanese Pygmy Woodpecker(D. Kizuki) 826.0Hz. In interpreting this data, Analysis of Variance (ANOVA) was used and it was determined that there was a significant statistical difference between species in drumming duration, time and interval of striking. The findings support that the bigger the biomass of the woodpecker, the longer the drumming duration and striking time. However, the smaller the size of the woodpecker, the faster the strike speed. A correlation between body type size and drumming characteristics was clearly identified. As for strike frequency, measured in Hertz, the medium sized Great Spotted Woodpecker's (D. major) frequency was high whereas the Black Woodpecker(D. martius) and Japanese Pygmy Woodpecker's(D. Kizuki) frequency was similar. A clear trend in reference to body size on this measure does not exist.

The Kinematics Analysis of the Badminton High Clear Motion in Woman Middle School Student (여자중학생 배드민턴 하이클리어 동작의 운동학적 분석)

  • Kim, Chang-Bum;Ryu, Jae-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.91-107
    • /
    • 2002
  • This research got the following conclusion as result that analyzed high clear action kinematically to 4 C girls' junior high school badminton players who are situated in Chungchong-bukdo. 1. Most of the subject didn't rotate their right shoulder and elbow joint at back swing and moved speedy to shuttle cock. And an cooperation action of joint decreases displaying only a good action on both subject`s specification joint part. 2. When the subject S1 and S2 swing slowly and largely the joint of shoulder and elbow and then the speed of right wrist and racket head is fast, the cooperation action of joint is better than other subject. 3. An angle change of right shoulder showed angle that all subjects are great being caused in softness of joint and angular velocity was exposed that load enough Impact force and increase the speed of racket head as angular velocity decreases rapidly in Impact except subject S3. 4. All subjects of right elbow angle change showed similar form and was exposed that subject S2 sees form of impact stage serious bends from back swing and do not use force effectively in angular velocity. 5. Angle of right wrist appeared that the speed of shuttle cock is decelerated because fast bends of wrist is not formed shortly after Impact because all subject do not accomplish big angle shortly after back swing. Angular velocity can assume that the subject S1 and S4 are using and move fast strong snap shot offering angular velocity value of Impact stage sound (-). 6. While size of Impact stage knee angle accomplishes angle that is big both subject, hip joint angles sees small angle and is playing swing that do on upper body and arm without using strong waist force that is composition action with knee and hip joint.

UNDERWATER DISTRIBUTION OF VESSEL NOISE (선박소음의 수중분포에 관한 연구)

  • PARK Jung Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.227-235
    • /
    • 1977
  • The noise pressure scattered underwater on account of the engine revolution of a pole and liner, Kwan-Ak-San(G. T. 234.96), was measured at the locations of Lat. $34^{\circ}47'N$, Long. $128^{\circ}53'E$ on the 16th of August 1976 and Lat. $34^{\circ}27'N$, Long. $128^{\circ}23'E$ on the 28th of July, 1977. The noise pressure passed through each observation point (Nos. 1 to 5), which was established at every 10m distance at circumference of outside hull was recorded when the vessel was cruising and drifted. In case of drifting, the revolution of engine was fixed at 600 r. p. m. and the noise was recorded at every 10 m distance apart from observation point No. 3 in both horizontal and vertical directions with $90^{\circ}$ toward the stern-bow line. In case of cruising, the engine was kept in a full speed at 700 r.p.m. and the sounds passed through underwater in 1 m depth were also recorded while the vessel moved back and forth. The noise pressure was analyzed with sound level meter (Bruel & Kjar 2205, measuring range 37-140 dB) at the anechoic chamber in the Institute of Marine Science, National Fisheries University of Busan. The frequency and sound waves of the noise were analyzed in the Laboratory of Navigation Instrument. From the results, the noise pressure was closely related to the engine revolution shelving that the noise pressure marked 100 dB when .400 r. p. m. and increase of 100 r. p. m. resulted in 1 dB increase in noise pressure and the maximum appeared at 600 r. p. m. (Fig.5). When the engine revolution was fixed at 700 r. p. m., the noise pressures passed through each observation point (Nos. 1 to 5) placed at circumference of out side hull were 75,78,76,74 and 68 dB, the highest at No.2, in case of keeping under way while 75,76,77,70 and 67 dB, the highest at No.3 in case of drifting respectively (Fig.5). When the vessel plyed 1,400 m distance at 700 r.p.m., the noise pressure were 67 dB at the point 0 m, 64 dB at 600m and 56 dB at 1,400m on forward while 72 at 0 m, 66 at 600 m and 57 dB at 1,400 m on backward respectively indicating the Doppler effects 5 dB at 0 m and 3 dB at 200 m(Fig.6). The noise pressures passed through the points apart 1,10,20,30,40 and 50 m depth underwater from the observation point No.7 (horizontal distance 20 m from the point No.3) were 68,75,62,59,55 and 51 dB respectively as the vessel was being drifted maintaining the engine revolution at 600 r. p. m. (Fig. 8-B) whereas the noise pressures at the observation points Nos.6,7,8,9 and 10 of 10 m depth underwater were 64,75,55,58,58 and 52 dB respectively(Fig.8-A).

  • PDF

THE EFFECT OF LOW-VISCOSITY RESIN SYSTEMS OM MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATIONS (Low-viscosity Resin Sysem이 복합레진 수복물의 변연누출에 미치는 영향)

  • Yang, Jeong-Suk;Kim, Mun-Hyoun;Her, Sun;Kim, Jae-Gon;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.2
    • /
    • pp.460-474
    • /
    • 1997
  • The purpose of this study was to evaluate and compare the effectiveness of various low-viscosity resin systems used as rebonding agents to prevent microleakage at the margins of class I composite resin restorations. Seventy sound human premolars were selected for experiment. Class I cavities were prepared and each cavity was conditioned with a 37% phosphoric acid for 15 sec, rinsed with water for 15 sec, and dried with compressed air. Bonding agent(Scotchbond Multipurpose, 3M Co.) was applied and a hybrid composite resin (Z-100, 3M Co.) was placed using an incremental technic. The excess cured composite resin was carefully removed with Sof-Lex discs(3M Co.) to expose the original margins of the cavity. The following seven groups were established : group 1 was not rebonded and used as control group ; group 2 was rebonded with a Scotchbond Multipurpose(3M Co.) and finished ; group 3 was rebonded with a Fortify(BISCO) and finished ; group 4 was rebonded with a Concise white sealant(3M Co.) and finished ; group 5 was rebonded with a Concise white sealant(3M Co.) and not finished ; group 6 was rebonded with a P&F sealant(BISCO) and finished; group 7 was rebonded with a P&F sealant(BISCO) and not finished. The specimens were then subjected to 500 thermocycles between 5 & 65 with a 10 see dwell time and immersed in 2% methylene blue dye solution for 24 hours and sectioned with low-speed diamond cutter into two part under water condition. The extent of microleakage at rebonded margins was evaluated microscopically and scored for dye penetration according to the following scale : 0=no dye penetration ; 1=dye penetration to half-way along axial wall between enamel surface and DEJ ; 2=dye penetration beyond halfway along axial wall between enamel surface and DEJ ; 3=dye penetration to the full depth of DEJ or beyond DEJ. Selected samples were prepared for SEM observation to determine the depth of penetration of the rebonding agent into the marginal interface. The obtained results were as follows: 1. In the group 2 and 3, which is rebonded with a Scotchbond Multipupose and Fortify, dye penetration score were decreased significantly than that of group 1 (P<0.05), but group 4 and 6 were not statistically different from group 1(P>0.05). 2. There were significant differences between group 4, 6 and group 5, 7 when compared by dye penetration score (P<0.05). 3. In the SEM observation, Scotchbond Multipurpose and Fortify were penetrated within $30-40{\mu}m$ depth of the outermost surface. However, both sealants were failed to penetrate into the debonded interface.

  • PDF

Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images (3차원 전산화단층촬영 영상을 이용한 안면 연조직 두께 계측의 임상적 유용성)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Choi Seong-Ho;Kim Chong-Kwan;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Purpose : To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. Materials and Methods : One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed; 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. Conclusion : The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement.

  • PDF

A STUDY ON THE FRACTURE RESISTANCE AND CHARACTERISTICS OF TEETH IN CLASS II CAVITY RESTORATIONS (2급(級) 와동(窩洞) 수복시(修復時) 치아파괴(齒牙破壞) 저항성(抵抗性) 및 귀열양상(龜裂樣相)에 관(關)한 연구(硏究))

  • Joo, Ik-Nam;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.337-348
    • /
    • 1988
  • The purpose of this study was to examine the fracture strength and characteristics of teeth with MOD cavity preparation. Freshly extracted sound maxillary premolars were cleaned and stored in normal saline solution $37^{\circ}C$ for 72 hours before experiments. The roots of teeth were embedded in a self-curing resin, and the exposed crown were maintained in a vertical position by a modelling wax in a brass ring. The MOD cavities were prepared with No. 57 carbide bur under high speed to a depth of 2.0mm and a width of 2.0mm(Fig.1). All the prepared teeth specimens were divided into 7 groups according to the mode of cavity form and restorative materials (Table 1, 2): Group I, unpreapred, intact teeth as control Group II, prepared cavity without restoration Group III, prepared teeth restored with amalgam Group IV, prepared teeth restored with composite resin (P-10) Group V, prepared teeth with beveled enamel margins restored with composite resin (P-10) Group VI, prepared teeth restored with light-cured composite resin (P-30) Group VII, prepard teeth with beveled enamel margins restored with light-cured composite resin (P-30) After placement of restorations, all of the specimens were stored in water at $37^{\circ}C$ for 72 hours before testing. All of the specimens were tested on the Instron Universal Testing machine (No. 6025) in order to evaluate the strength of fracture. One metal ball 5.0mm in diameter contacting the specimens parallel to the occlusal surface was used to in this study (Fig. 1). The fracture characteristics of the specimens were examined with naked eye and in the scanning electron microscope (JSM-20). The results obtained from this study were as follows: 1. The mean fracture strength was the highest in group VI and that in group II was the lowest. 2. The progress of crack of teeth propagated into the pulp cavity. 3. In case of the group of the restored teeth, the crack occurred to be accompanied with cuspal fracture. 4. The crack of restored teeth was initiated along the pulpo-axial line angle of the cavity.

  • PDF

EFFECTS OF DENTIN SURFACE WETNESS OR DESICCATION AFTER ACID ETCHING ON DENTIN BONDING (산부식후 상아질 표면의 습윤 또는 건조가 상아질 결합에 미치는 영향)

  • Yang, Won-Kyung;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.243-253
    • /
    • 2000
  • The purpose of this in vitro study was to evaluate dentin bonding by two different dentin bonding systems(DBS) using acetone based primer or adhesive [All Bond 2(AB2), One Step(OS)] when they were applied by wet or dry bonding technique. Morphology of resin-dentin interface and hybrid layer thickness(HLT) were investigated using Confocal Laser Scanning Microscope(CLSM) and compared to shear bond strength(SBS). 72 extracted sound human molars were randomly divided into 4 groups of 18 teeth each - Group 1.(AW); AB2 by wet bonding. Group 2(AD); AB2 by dry bonding. Group 3.(OW); OS by wet bonding, Group 4.(OD); OS by dry bonding. In 6 teeth of each group, notch-shaped class V cavities(depth 2mm) were prepared on buccal and lingual surface at the cementoenamel juction(12 cavities per group). To obtain color contrast in CLSM observation, bonding resins of each DBS were mixed with rhodamine B and primer of AB2 was mixed with sodium fluorescein. Prepared teeth of each group were treated with AB2, OS, respectively according to the manufacturer's instructions except for dentin surface moisture treatment after acid etching. In group 1 and 3, after acid etching, excess water was removed with wet tissue(Kimwipes), leaving consistently shiny, visibly hydrated dentin surface. In group 2 and 4, dentin surface was dried for 10 seconds at 1 inch distance. The treated teeth were then packed with composite resin(${\AE}$litefil) and light-cured. 12 microscopic samples($60{\sim}80{\mu}m$ thickness) of each group were obtained after longitudinal section and grinding(Exakt cutting and grinding system). Morphological investigation of resin-dentin interface and HLT measurement using CLSM were done. For measurement of SBS, remaining 12 teeth of each group were flattened occlusally to remove all enamel and grinded to 500 grit SiC(Pedemet Specimen Preparation Equipment). After applying DBS on the exposed dentin surface, composite resin was applied in the shape of cylinder, which has 5mm diameter, 1.5mm thickness, and light cured. SBS was measured using Instron with a crosshead speed of 0.5mm/min. It was concluded as follows, 1. HLT of AW(mean: $2.59{\mu}m$) was thicker than any other group, and followed by AD, OW, OD in descending order(mean; 2.37, 2.28, $1.92{\mu}m$). Only OD had statistically significant differences(p<0.05) to AW and AD. 2. There were intimate contact of resin and dentin at the interface in wet bonding groups, but gaps or irregular interfaces were observed in dry bonding groups. 3. The length, diameter, density of resin tags were various even in the same group without significant differences between groups and lots of adhesive lateral branches were observed. 4. There were no statistically significant difference of SBS between AB2 and OS, but SBS of wet bonding groups were significantly higher(p<0.05) than dry bonding groups. 5. There were no consistent relationships between HLT and SBS.

  • PDF

On The Voice Training of Stage Speech in Acting Education - Yuri Vasiliev's Stage Speech Training Method - (연기 교육에서 무대 언어의 발성 훈련에 관하여 - 유리 바실리예프의 무대 언어 훈련방법 -)

  • Xu, Cheng-Kang
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.203-210
    • /
    • 2021
  • Yuri Vasilyev - actor, director and drama teacher. Russian meritorious artist, winner of the stage "Medal of Friendship" awarded by Russian President Vladimir Putin; academician of the Petrovsky Academy of Sciences and Arts in Russia, professor of the Russian National Academy of Performing Arts, and professor of the Bavarian Academy of Drama in Munich, Germany. The physiological sense stimulation method based on the improvement of voice, language and motor function of drama actors. On the basis of a systematic understanding of performing arts, Yuri Vasiliev created a unique training method of speech expression and skills. From the complicated art training, we find out the most critical skills for focused training, which we call basic skills training. Throughout the whole training process, Professor Yuri made a clear request for the actor's lines: "action! This is the basis of actors' creation. So action is the key! Action and voice are closely linked. Actor's voice is human voice, human life, human feeling, human experience and disaster. It is also the foundation of creation that actors acquire their own voice. What we are engaged in is pronunciation, breathing, tone and intonation, speed and rhythm, expressiveness, sincerity, stage voice and movement, gesture, all of which are used to train the voice of actors according to the standard of drama. In short, Professor Yuri's training course is not only the training of stage performance and skills, but also contains a rich view of drama and performance. I think, in addition to learning from the means and methods of training, it is more important for us to understand the starting point and training objectives of Professor Yuri's use of these exercises.