• Title/Summary/Keyword: Speed Reduction

Search Result 2,407, Processing Time 0.028 seconds

High Speed and Robust Processor based on Parallelized Error Correcting Code Module (병렬화된 에러 보정 코드 모듈 기반 프로세서 속도 및 신뢰도 향상)

  • Kang, Myeong-jin;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1180-1186
    • /
    • 2020
  • One of the Embedded systems Tiny Processing Unit (TPU) usually acts in harsh environments like external shock or insufficient power. In these cases, data could be polluted, and cause critical problems. As a solution to data pollution, many embedded systems are using Error Correcting Code (ECC) to protect and restore data. However, ECC processing in TPU increases the overall processing time by increasing the time of instruction fetch which is the bottleneck. In this paper, we propose an architecture of parallelized ECC block to the reduce bottleneck of TPU. The proposed architecture results in the reduction of time 10% compared to the original model, although memory usage increased slightly. The test is evaluated with a matrix product that has various instructions. TPU with proposed parallelized ECC block shows 7% faster than the original TPU with ECC and was able to perform the proposed test accurately.

Effect of Micro-grooves Manufactured via Ultrasonic Nanocrystalline Surface Modification on Sliding Friction (초음파나노표면개질기술로 제작된 마이크로 그루브가 미끄럼 마찰 특성에 주는 영향)

  • Ro, Junsuek;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The surface texture produced via surface texturing is an important approach for controlling the tribological behavior of friction behavior of mechanical devices. The purpose of this study is to investigate the effect of grooves generated via ultrasonic nanocrystal surface modification (UNSM) technology on the tribological performance of AISI 4150 steel against stainless steel 316L. In the study, tribological tests are performed under two different regimes, namely mixed and hydrodynamic lubrication, by varying the applied normal load and reciprocating speed during the tests. According to the test results, the friction coefficient decreases as static load (10 N, 30 N, and 50 N) of UNSM technology increases in the mixed lubrication regime. Conversely, the friction coefficient increases as the static load (10 N, 30 N, and 50 N) of UNSM technology increases in the hydrodynamic lubrication regime. Hence, the results indicate that micro-grooves generate hydrodynamic pressure in the outlet, which increases the oil film thickness between the two mating surfaces. This potentially leads to a reduction in friction in the mixed lubrication regime due to the prevention of contact of asperities and debris. However, the results indicate an adverse effect in the hydrodynamic lubrication regime. In this regard, additional experiments should be performed to investigate the effect of grooves generated by UNSM technology at varying conditions on the friction behavior of AISI 4150 steel, which in turn can be controlled by the generated pressure and oil film thickness at the contact interface.

The Development of Air-based Space Launch Vehicle for small satellites (초소형위성 발사를 위한 공중기반 우주발사체 발전방안)

  • Cho, Taehwan;Lee, Soungsub
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • The end of the ROK-U.S. missile guidelines opened up the possibility of developing space launch vehicles for various platforms based on air and sea. In particular, the air-based space launch vehicle is an essential space power projection capability compared to the ground-based space launch vehicle in consideration of the geographical location of the Korean Peninsula, such as the deployment of various satellite orbits and the timely launch of satellite. In addition, compared to the ground-based launch vehicle, the cost reduction effect is large, and it has the merit of energy gain because it can be launched with the advantage of the aircraft's altitude and speed. Therefore, in this paper, the necessity of air-based space launch vehicle in the strategic environment of the Korean Peninsula is clearly presented, and through technology trend analysis of various air launch vehicle, the three methods are proposed to have the most efficient air-based space launch vehicle capability in the Korean situation.

Weld Characteristic Analysis for Weld Process Variables of Tip-Rotating Arc Welding in Butt Joint of Shipbuilding Steels (조선용 강재의 맞대기 이음에서 팁회전 아크 용접의 공정 변수에 따른 용접 특성 분석)

  • Lee, Jong Jung;Ahn, Sang Hyun;Park, Young Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.105-112
    • /
    • 2021
  • Reduction of weld distortions and increase in productivity are some of the major goals of the shipbuilding industry. To address these issues, many researchers have attempted to apply new welding processes. In the shipbuilding industry, steel is the candidate material of choice owing to its good weldability. However, conventional welding techniques are not feasible for avoiding welding problems. Tip-rotating arc welding is one of the high-efficiency welding process that has several advantages, such as high welding speed, high melting rate, low heat input, and less distortion. The present study investigates the influence of the welding variables on the weld characteristics of tip-rotating arc welding. Welding was performed using EH36 as the base metal and SM-70s as the filler metal, which are widely used in shipbuilding. Basic experiments were conducted to understand the effects of the major welding variables, such as welding and tip-rotating speeds. The distortion and mechanical properties of the optimal welding conditions were used to evaluate the tip-rotating arc welding performance. Consequently, the feasibility of the tip-rotating arc welding process for joining steel components was investigated, so that the optimized welding conditions could be applied directly to ship body welding to enhance the quality of the welded joints.

Experimental Study on Impact Pressure at the Crown Wall of Rubble Mound Seawall and Velocity Fields using Bubble Image Velocimetry (기포영상유속계와 복합파고계를 활용한 경사식 호안 전면에서 쇄파의 형태에 따른 충격쇄파압의 분류)

  • Na, Byoungjoon;Ko, Haeng Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.119-127
    • /
    • 2022
  • To investigate varying wave impact pressure exerting at the crest wall of rubble mound seawall, depending on breaking wave properties, regular waves with different wave periods were generated. Wave velocity fields and void fraction were measured using bubble image velocimetry and simple combined wave gauge system (Na and Son, 2021). For the waves with shorter wave period, maximum horizontal velocity was less reduced compared to incident wave speed while breaking-induced air entrainment was occurred intensely, leading to a significant reduction of wave impact pressure at the crest wall. For the waves with longer wave periods, less air wave entrained and the wave structure followed a flip-through mode (Cooker and Peregrine, 1991), resulting in an abrupt increase of the impact pressure.

Load-carrying Capacities of Safety Structures on Wind-resistant Analyses of Cable-stayed Bridge (사장교의 내풍해석을 통한 인명보호 구조물의 내하능력평가)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.587-594
    • /
    • 2022
  • In the 2000s, a lot of cable-type grand bridges are being built in consideration of economic aspects such as the reduction of logistics costs and the distribution of traffic volume due to rapid economic development. In addition, because the recently installed grand bridges are designed in an aesthetic form that matches the surrounding environment as well as the original function of the road bridge, and serves as a milestone in an area and is used as an excellent tourism resource, attracting many vehicles and people, there is an urgent need for a safety structure that can ensure the safety of not only vehicles but also people. In order to make cable-stayed bridge safe on wind for additional five safety structures, main girder models with and without safety structures for wind-tunnel experiments was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel experiment results. From the wind tunnel experiments for the aerodynamic force coefficients of main girder with five safety structures and the wind resistant analyses of cable-stayed bridge without safety structure and with safety structure, it was concluded that the best form of wind-resistant safety was shown in the order of mesh, standard, bracing, hollow, and closed type. And wind-resistant safety of cable-stayed bridge with hollow and closed type on design wind speed 68.0m/sec was not secured. Finally, as five safety structures are installed, maximum rate of stress increments was shown in the order of steel main beam, steel floor beam, concrete floor beam and cables.

A Performance Comparison of DSE-MMA and DQE-MMA Adaptive Equalization Algorithm using Dither Signal (Dither 신호를 이용한 DSE-MMA와 DQE-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag;You, Jeong-Bong;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • This paper compares the equalization performance of the DSE-MMA (Dithered Signed Error-MMA) and DQE-MMA (Dithered Quantized Error-MMA) adaptive equalization algorithm based on the dither signal in order to reduce the intersymbol interference occurs at communication channel. These algorithm was emerged in ordr to reduction of arithmetic operation than current MMA, it makes the independent and identical distribute the quantized error component by performing the 1 or N bit quautizer after adding the dither singal in obtaining the error signal for adapting process. It is possible to improve the robustness performance of adaptive algorithm, but degrade the MSE performance in steady state by dither signal. The paper directly compare the DSE-MMA and DQE-MMA adaptive equalization performance of the same concept of dithering in the same communication channel and signal to noise ratio by computer simulation. As a result of simulation, the DQE-MMA has more better in the every performance index, equalizer output constellation, residual isi, MSE and SER performance, but not in convergence speed.

Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices (모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러)

  • Na, Yong-Seok;Son, Hyun-Wook;Kim, Hyung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 2022
  • This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).

Manufacturing of Fe-Mn-Al-C Based Low Mn Lightweight Steel Via Direct Energy Deposition (Direct energy deposition 공정을 이용한 Fe-Mn-Al-C계 저망간 경량철강 제조)

  • Ko, Kwang Kyu;Son, Han Sol;Jung, Cha Hee;Bae, Hyo Ju;Park, Eun Hye;Kim, Jung Gi;Choi, Hyunjoo;Seol, Jae Bok
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.320-324
    • /
    • 2022
  • Lightweight steel is a crucial material that is being actively studied because of increased carbon emissions, tightening regulations regarding fuel efficiency, and the emergence of UAM, all of which have been recently labeled as global issues. Hence, new strategies concerning the thickness and size reduction of steel are required. In this study, we manufacture lightweight steel of the Fe-Mn-Al-C system, which has been recently studied using the DED process. By using 2.8 wt.% low-Mn lightweight steel, we attempt to solve the challenge of joining steel parts with a large amount of Mn. Among the various process variables, the laser scan power is set at 600 and 800 W, and the laser scan speed is fixed at 16.67 mm/s before the experiments. Several pores and cracks are observed under both conditions, and negligibly small pores of approximately 0.5 ㎛ are observed.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.