• Title/Summary/Keyword: Spectral element model

Search Result 100, Processing Time 0.031 seconds

Dynamics of an Axially Moving Timoshenko Beam (축 방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joo-Hong;Oh, Hyung-Mi;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF

A Structural Damage Identification Method Based on Spectral Element Model and Frequency Response Function

  • Lee, U-Sik;Min, Seung-Gyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.559-565
    • /
    • 2003
  • A spectral element model-based structural damage identification method (SDIM) was derived in the previous study by using the damage-induced changes in frequency response functions. However the previous SDIM often provides poor damage identification results because the nonlinear effect of damage magnitude was not taken into account. Thus, this paper improves the previous SDIM by taking into account the nonlinear effect of damage magnitude. Accordingly an iterative solution method is used in this study to solve the nonlinear matrix equation for local damages distribution. The present SDIM is evaluated through the numerically simulated damage identification tests.

Spectral Element Model for the Vibration Analysis of Elastic Layered Beams (탄성적층보의 진동해석을 위한 스펙트럴요소 모델)

  • 김주홍;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.438-443
    • /
    • 1998
  • In this paper, the axial-bending coupled equations of motion for an elastic layered beam are derived. From this equation of motion, the spectral element is formulated for the vibration analysis by use of the spectral element method (SEM). The modal analysis methodology for the present coupled field equations of motion is then developed. As an illustrative example, a cantilevered beam is considered. The correctness of the equations of motion developed herein is verified by gradually reducing the thickness of upper elastic layer to converge to the single layered elastic beam solutions. Also, the accuracy of spectral element is confirmed by comparing its results with the result by modal analysis.

  • PDF

Spectral Element Analysis of the Pipeline Conveying Internal Flow (스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석)

  • 강관호;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF

Exact Dynamic Stiffness Model for the Pipelines Conveying Internal Unsteady Flow (내부 비정상유동을 갖는 파이프계의 동강성모델링)

  • Park, Jong-Hwan;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1666-1671
    • /
    • 2003
  • Exact dynamic stiffness model for a uniform straight pipeline conveying unsteady fluid is formulated from a set of fully coupled pipe-dynamic equations of motion, in which the fluid pressure and velocity of internal flow as well as the transverse and axial displacements of the pipeline are all treated as dependent variables. The accuracy of the dynamic stiffness model formulated herein is first verified by comparing its solutions with those obtained by the conventional finite element model. The spectral element analysis based on the present dynamic stiffness model is then conducted to investigate the effects of fluid parameters on the dynamics and stability of an example pipeline problem.

  • PDF

Vibration Analysis of the Moving Plates Subjected to the Force of Gravity

  • Jooyong Cho;Kim, Doyeon;Lee, Usik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.3-10
    • /
    • 2003
  • The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accurate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension and gravity. The concept of Kantorovich method and the principle of virtual displacement is used in the frequency-domain to formulate the dynamic stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The effects of moving speed, in-plane tension and gravity on the natural frequencies of the plate are numerically investigated.

  • PDF

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

The topographic effect of ground motion based on Spectral Element Method

  • Liu, Xinrong;Jin, Meihai;Li, Dongliang;Hu, Yuanxin;Song, Jianxue
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.411-429
    • /
    • 2017
  • A Spectral Element Method for 3D seismic wave propagation simulation is derived based on the three-dimensional fluctuating elastic dynamic equation. Considering the 3D real terrain and the attenuation characteristics of the medium, the topographic effect of Wenchuan earthquake is simulated by using the Spectral Element Method (SEM) algorithm and the ASTER DEM model. Results show that the high PGA (peak ground acceleration) region was distributed along the peak and the slope side away from the epicenter in the epicenter area. The overall distribution direction of high PGA and high PGV (peak ground velocity) region is parallel to the direction of the seismogenic fault. In the epicenter of the earthquake, the ground motion is to some extent amplified under the influence of the terrain. The amplification effect of the terrain on PGA is complicated. It does not exactly lead to amplification of PGA at the ridge and the summit or attenuation of PGA in the valley.

Dynamics of an Axially Moving Thermoelastic Beam-Plate (축방향으로 이동하는 열탄성 보-평판의 동특성 해석)

  • 김도연;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.21-28
    • /
    • 2003
  • The use of frequency-dependent spectral element matrix (or dynamic stiffness matrix) in structural dynamics may Provide very accurate solutions, while it reduces the number of degrees of freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam-plate moving with constant speed under uniform in-plane tension.

  • PDF

Numerical Models for Atmospheric Diffusion Phenomena by Pseudospectral Method(2) : Spectral Model for a Hilly Terrain of Real Scale (의사스펙트로법에 의한 대기확산현상의 수치모델(2): 실규모의 복잡지형에서의 스펙트로모델)

  • 김선태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.242-246
    • /
    • 1993
  • Theoretically, spectral method has the highest accuracy among present numerical methods, but it is generally difficult to apply to complex terrains because of complex boundary conditions. Recently, spectral-element method, basically divide the domain into a set of rectangular subdomain and solve the equation at each subdomain, has been introduced. However, boundary conditions become more complex and requires more computing time, thus spectral-element method is not powerful for all complex terrain problems. In this paper, potential flow theory was intorduced to solve the air flows and diffusion phenomenon in the presence of terrain obstacles. Using the velocity potential-stream line orthogonal coordinate space, the diffusion problems of hilly terrain by pseudospectral method were solved and compared those with no terrain real scale solutions.

  • PDF