• Title/Summary/Keyword: Specific resistance ($K_2'$)

Search Result 605, Processing Time 0.03 seconds

Early Bronchoconstriction After Allergen Challenge of Nonanesthetized Guinea Pigs (Ovalbumin으로 감작된 기니픽에서 Allergen 흡입으로 인한 즉시형 기관지 수축반응에 대한 비침습적 측정)

  • Kim, Je-Hyeong;Shim, Jae-Jeong;Lee, Sung-Yong;Kwon, Young-Hwan;Lee, So-Ra;Lee, Sang-Youb;Cho, Jae-Youn;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • Background: Bronchial asthma is a complex disease, which is characterized by spontaneous exacerbations of airway obstruction and persistent bronchial hyperresponsiveness. Animal models have fallen short of reproducing the human disease, particularly in mimicking the spontaneous and persistent airflow obstruction that characterized in asthma. In animals, airflow obstruction is usually assessed by measuring airflow resistance during tidal breathing under such invasive technique as tracheostomy and anesthesia. A noninvasive technique for measuring pulmonary function in small animals is needed to evaluate long-term changes in lung function during the course of experimentally produced disease without sacrificing the animal. Purpose: The purpose of this study was to evaluate early bronchoconstrcition after allergen challenge and airway responsiveness (AR) to inhaled methacholine in nonanethetized, unrestrained guinea pigs. Method: Guinea pig model of asthma was sensitized by subcutaneous injection with ovalbumin and challenged by inhalation of aerosolized ovalbumin(1% wt/vol ovlabumin). Airflow obstruction of conscious guinea pig was measured as specific airway resistance (airway resistance $\times$ thoracic gas volume). Airway resistance and thoracic gas volume of conscious guinea pig were assessed by body plethysmography before challenge and at regular intervals for as long as 30 minutes after challenge. AR to aerosolized methacholine of asthma group was compared with that of control group in body plethysmography. Result: Asthma model<> developed in 13 (65%) among 20 guinea pigs, in which early responses occurred in the airways after the exposure to inhalation with ovalbumin. Airway challenge with ovalbumin caused increase in specific airway resistance, which peaked at 6 minutes and amounted to a $231.5{\pm}30.4%$ increase from baseline. AR to aerosolized methacholine of asthma model increased significantly compared with control group. Conclusion: These results have showed a useful animal model to evaluate early bronchoconstrcition after allergen challenge and airway responsiveness in nonanethetized, unrestrained guinea pigs.

  • PDF

A New SOI LDMOSFET Structure with a Trench in the Drift Region for a PDP Scan Driver IC

  • Son, Won-So;Kim, Sang-Gi;Sohn, Young-Ho;Choi, Sie-Young
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • To improve the characteristics of breakdown voltage and specific on-resistance, we propose a new structure for a LDMOSFET for a PDP scan driver IC based on silicon-on-insulator with a trench under the gate in the drift region. The trench reduces the electric field at the silicon surface under the gate edge in the drift region when the concentration of the drift region is high, and thereby increases the breakdown voltage and reduces the specific on-resistance. The breakdown voltage and the specific on-resistance of the fabricated device is 352 V and $18.8 m{\Omega}{\cdot}cm^2$ with a threshold voltage of 1.0 V. The breakdown voltage of the device in the on-state is over 200 V and the saturation current at $V_{gs}=5V$ and $V_{ds}$=20V is 16 mA with a gate width of $150{\mu}m$.

  • PDF

Evaluation of STS 430 and STS 444 for SOFC Interconnect Applications

  • Kim, S.H.;Huh, J.Y.;Jun, J.H.;Kim, D.H.;Jun, J.H.
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Ferritic stainless steels for the SOFC interconnect applications are required to possess not only a good oxidation resistance, but also a high electrical conductivity of the oxide scale that forms during exposure at the SOFC operating environment. In order to understand the effects of alloying elements on the oxidation behavior of ferritic stainless steels and on the electrical properties of oxide scales, two kinds of commercial ferritic stainless steels, STS 430 and STS 444, were investigated by performing isothermal oxidations at $800^{\circ}C$ in a wet air containing 3% $H_{2}O$. The results showed that STS 444 was superior to STS 430 in both of the oxidation resistance and the area specific resistance. Although STS 444 contained a less amount of Mn for the $(Mn,Cr)_{3}O_{4}$ spinel formation than STS 430, the minor alloying elements of Al and Mo in STS 444, which were accumulated in the base metal region adjacent the scale, were suggested to reduce the scale growth rate and to enhance the scale adherence to the base metal.

Insulin resistance and Alzheimer's disease

  • De La Monte, Suzanne M.
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.475-481
    • /
    • 2009
  • Emerging data demonstrate pivotal roles for brain insulin resistance and insulin deficiency as mediators of cognitive impairment and neurodegeneration, particularly Alzheimer's disease (AD). Insulin and insulin-like growth factors (IGFs) regulate neuronal survival, energy metabolism, and plasticity, which are required for learning and memory. Hence, endogenous brain-specific impairments in insulin and IGF signaling account for the majority of AD-associated abnormalities. However, a second major mechanism of cognitive impairment has been linked to obesity and Type 2 diabetes (T2DM). Human and experimental animal studies revealed that neurodegeneration associated with peripheral insulin resistance is likely effectuated via a liver-brain axis whereby toxic lipids, including ceramides, cross the blood brain barrier and cause brain insulin resistance, oxidative stress, neuro-inflammation, and cell death. In essence, there are dual mechanisms of brain insulin resistance leading to AD-type neurodegeneration: one mediated by endogenous, CNS factors; and the other, peripheral insulin resistance with excess cytotoxic ceramide production.

Ginsenoside Rh2 differentially Mediates microRNA Expression to Prevent Chemoresistance of Breast Cancer

  • Wen, Xu;Zhang, He-Da;Zhao, Li;Yao, Yu-Feng;Zhao, Jian-Hua;Tang, Jin-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1105-1109
    • /
    • 2015
  • Chemoresistance is the most common cause of chemotherapy failure during breast cancer (BCA) treatment. It is generally known that the mechanisms of chemoresistance in tumors involve multiple genes and multiple signaling pathways,; if appropriate drugs are used to regulate the mechanisms at the gene level, it should be possible to effectively reverse chemoresistance in BCA cells. It has been confirmed that chemoresistance in BCA cells could be reversed by ginsenoside Rh2 (G-Rh2). Preliminary studies of our group identified some drugresistance specific miRNA. Accordingly, we proposed that G-Rh2 could mediate drug-resistance specific miRNA and corresponding target genes through the gene regulatory network; this could cut off the drug-resistance process in tumors and enhance treatment effects. G-Rh2 and breast cancer cells were used in our study. Through pharmaceutical interventions, we could explore how G-Rh2 could inhibit chemotherapy resistance in BCA, and analyze its impact on related miRNA and target genes. Finally, we will reveal the anti-resistance molecular mechanisms of G-Rh2 from a different angle in miRNA-mediated chemoresistance signals among cells.

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir;Topaloglu, Alikemal
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.245-253
    • /
    • 2018
  • The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

Design and Optimization of 4.5 kV 4H-SiC MOSFET with Current Spreading Layer (Current Spreading Layer를 도입한 4.5 kV 4H-SiC MOSFET의 설계 및 최적화)

  • Young-Hun, Cho;Hyung-Jin, Lee;Hee-Jae, Lee;Geon-Hee, Lee;Sang-Mo, Koo
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.728-735
    • /
    • 2022
  • In this work, we investigated a high-voltage (~4.5 kV) 4H-SiC power DMOSFET with modifications of current spreading layer (CSL), which was introduced below the p-well region for low on-resistance. These include the following: 1) a thickness of CSL (TCSL) from 0 um to 0.9 um; 2) a doping concentration of CSL (NCSL) from 1×1016 cm-3 to 5×1016 cm-3. The design is optimized using TCAD 2D-simulation, and we found that CSL helps to reduce specific on-resistance but also breakdown voltage. The resulting structures exhibit a specific on-resistance (Ron,sp) of 59.61 mΩ·cm2, a breakdown voltage (VB) of 5 kV, and a Baliga's Figure of Merit (BFOM) of 0.43 GW/cm2.

Researches in Corrosion Resistance of Friction Stir Welded Aluminum alloys (마찰교반접합된 알루미늄 합금의 내식 특성에 관한 연구 동향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloys have been considered for substantial use in these industries. This ensues from their attractive strength to weight ratio, superb formability, apposite weldability and acceptable corrosion resistance. Depending on the specific application, corrosion behavior is a significant factor of a welded joint. In this study, recent researches in the view of corrosion resistance of friction stir welded aluminum alloys are briefly reviewed.

Study of Specific Resistance of Conductive Ink According to Temperature During Laser Sintering Process (전도성 잉크의 레이저 열경화 공정 시 온도에 따른 비저항 연구)

  • Lee, Dae-Geon;Park, Yong-Han;Park, Ji-Young;Kim, Dong-Keun;Moon, Yoon-Jae;Moon, Seung-Jae;Hwang, Jun-Young;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.119-124
    • /
    • 2013
  • In this study, the two-dimensional transient temperature of printed Ag nanoparticle ink during continuous wave laser sintering was calculated. Ag nanoparticle ink was printed on a glass substrate by inkjet printing. Then, a 532-nm continuous wave laser with different laser intensities was irradiated on the printed Ag nanoparticle ink for 60 s. During laser irradiation, the in-situ specific resistance of the sintered ink was measured. To obtain the transient temperature of the sintered ink during the laser sintering process, a two-dimensional transient heat conduction equation was derived by applying the Wiedemann-Franz law. It was found that the specific resistance of the sintered ink decreased with an increase in the sintering temperature of the printed ink.