Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.4.245

Impacts of sludge retention time on membrane fouling in thermophilic MBR  

Ince, Mahir (Gebze Technical University, Department of Environmental Engineering)
Topaloglu, Alikemal (Bulent Ecevit University, Department of Environmental Engineering)
Publication Information
Membrane and Water Treatment / v.9, no.4, 2018 , pp. 245-253 More about this Journal
Abstract
The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.
Keywords
EPS; flux; fouling; MBR; resistance; SMP; SRT; thermophilic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Iorhemen, O.T., Hamza, R.A. and Tay, Z.H. (2016), "Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling", Membranes, 6(2), 1-29.
2 Ji, B., Yang, K., Chen, W., Wang, J. and Zhu, L. (2016), "Impacts of dissolved oxygen and initial sludge concentrations on aerobic stabilization of sewage sludge", Pol. J. Environ. Stud., 25(1), 153-157.   DOI
3 Ke, O. and Junxin, L. (2009), "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", J. Environ. Sci., 21(10), 1329-1335.   DOI
4 Khan, S.J., Visvanathan, C. and Jegatheesan, V. (2009), "Prediction of membrane fouling in MBR systems using empirically estimated specific cake resistance", Bioresource Technol., 100(23), 6133-6136.   DOI
5 LaPara, T. and Alleman, J. (1999), "Thermophilic aerobic biological wastewater treatment", Wat. Res., 33(4), 895-908.   DOI
6 Lee, W., Kang, S. and Shin, H. (2003), "Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors", J. Membr. Sci., 216(1-2), 217-227.   DOI
7 Li, B. and Wu, G. (2014), "Effects of sludge retention times on nutrient removal and nitrous oxide emission in biological nutrient removal processes", J. Environ. Res. Public Health, 11(4), 3553-3569.   DOI
8 Li, X., Gao, F., Hua, Z., Du, G. and Chen, G.J. (2005), "Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling", Sep. Purif. Technol., 46(1-2), 19-25.   DOI
9 Liu, Q.S., Liu, Y., Tay, J.H. and Show, K.Y. (2005), "Responses of sludge flocs to shear strength", Process Biochem., 40, 3213-3217.   DOI
10 Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G. and Liss, S.N. (2001), "Surface properties of sludge and their role in bioflocculation and settleability", Water Res., 35(2), 339-350.   DOI
11 Masse, A., Sperandio, M. and Cabassud, C. (2006), "Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time", Water Res., 40(10), 2405-2415.   DOI
12 Merlin, G., Omri, N., Gonze, E., Valette, E., Cauffet, G. and Henry, M. (2015), "Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment", Water Res., 83, 184-194.   DOI
13 Miyoshi, T., Tsuyuhara, T., Ogyu, R., Kimura, K. and Watanabe, Y. (2009), "Seasonal variations in membrane fouling in membrane bioreactors (MBRs) treating municipal wastewater", Water Res., 43(20), 5109-5118.   DOI
14 Nagwekar, P.R. (2014), "Removal of Organic Matter from Wastewater by Activated Sludge Process-Review", J. Sci. Eng. Technol. Res., 3(5), 1260-1263.
15 Ng, H.Y. and Hermanowicz, S.W. (2005), "Membrane bioreactor operation at short solids retention times: Performance and biomass characteristics", Water Res., 39(6), 981-992.   DOI
16 Salama, Y., Chennaoui, M., Sylla, A., Mountadar, M., Rihani, M. and Assobhei, O. (2016), "Characterization, structure and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: A review", Desalin. Water Treat., 57(35), 16220-16237.   DOI
17 Ouyang, K. and Liu, J. (2009), "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", J. Environ. Sci., 21(10), 1329-1335.   DOI
18 Pollice, A., Laera, G., Saturno, D. and Giordano, C. (2008), "Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage", J. Membr. Sci., 317(1-2), 65-70.   DOI
19 Rojas, M.E.H., Van Kaam, R., Schetrite, S. and Albasi, C. (2005), "Role and variations of supernatant compounds in submerged membrane bioreactor fouling", Desalination, 179(1-3), 95-107.   DOI
20 Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M. and Schrotter, J.C. (2006), "Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment", Water Res., 40(4), 710-720.   DOI
21 Sheng, G.P., Yu, H.Q and Li, X.Y. (2010), "Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review", Biotechnol. Adv., 28(6), 882-894.   DOI
22 Siddiqui, F.A. and Field, R.W. (2016), "Fouling and cleaning of a tubular ultrafiltration ceramic membrane", Membr. Water Treat., 7(5), 433-449.   DOI
23 Suvilampi, J. and Rintala, J. (2003), "Thermophilic aerobic wastewater treatment, process performance, biomass characteristics and effluent turbidity", Rev. Environ. Sci. Biotechnol., 2(1), 35-51.   DOI
24 Tchobanoglous, G. and Burton, F.L. (1991), Wastewater Engineering, 3rd ed., McGraw Hill Inc., New York, U.S.A.
25 Van Den Broeck, R., Van Dierdonck, J., Nijskens, P., Dotremont, C., Krzeminski, P., van der Graaf, J.H.J.M., Van Lier, J.B., Van Impe, J.F.M. and Smets, I.Y. (2012), "The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)", J. Membr. Sci., 401, 48-55.
26 Tinggang, L., Renbi, B. and Junxin, L. (2008), "Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm", J. Biotechnol., 135(1), 52-57.   DOI
27 Trussell, R.S., Merlo, R.P., Hermanowicz, S.W. and Jenkins, D. (2006), "The effect of organic 4 loading on process performance and membrane fouling in a submerged membrane 5 bioreactor treating municipal wastewater", Water Res., 40(14), 2675-2683.   DOI
28 Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A. and Hirata, A. (2003), "Extracellular polymeric substances responsible for bacterial adhesion onto solid surface", FEMS Microbiol. Lett., 223(2), 287-292.   DOI
29 Visvanathan, C., Choudhary, M.K., Mantalbo, M.T. and Jegatheesan, V. (2007), "Landfill leachate treatment using thermophilic membrane bioreactor", Desalination, 204(1-3), 8-16.   DOI
30 Vogelaar, J.C.T., Van Lier, J., Klapwijk, B., de Vries, M. and Lettinga, G. (2002a), "Assessment of effluent turbidity in mesophilic and thermophilic activated sludge reactors origin of effluent colloidal COD", Appl. Microbiol. Biotechnol., 59(1), 105-111.   DOI
31 Vogelaar, J.C.T., Van Lier, J., Klapwijk, B., de Vries, M. and Lettinga, G. (2002b), "Mesophilic and thermophilic activated sludge reactors-origin of effluent colloidal material", Water Res., 36, 1869-1879.   DOI
32 Wilen B.M. and Balmer P. (1999), "The effect of dissolved concentration on the structure, size and size distribution of activated sludge flocs", Water Res., 33(2), 391-400.   DOI
33 Yildiz, E., Keskinler, B., Pekdemir, T., Akay, G. and Nuhoglu, A. (2005), "High strengthwastewater treatment in a jet loopmembrane bioreactor: Kinetics and performance evaluation", Chem. Eng. Sci., 60(4), 1103-1116.   DOI
34 A.P.H.A. (2005), Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association, Washington, DC, U.S.A.
35 Abeynayaka, A. and Visvanathan, C. (2011a), "Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater", Bioresource Technol., 102(9), 5345-5352.   DOI
36 Abeynayaka, A. and Visvanathan, C. (2011b), "Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater", Bioresource Technol., 102(3), 2358-2366.   DOI
37 Adham, S. and Gagliardo, P. (1998), "Membrane bioreactors for water repurification-Phase I", Desalination Research and Development Program Report No. 34; Project No. 1425-97-FC-81-30006; United States Department of Interior, Bureau of Reclamation, U.S.A.
38 Wilen, B.M., Jin, B. and Lant, P. (2003), "The influence of key chemical constituents in activated sludge on surface and flocculating properties", Water Res., 37(9), 2127-2139.   DOI
39 Wu, B. and Fane, A.G. (2012), "Microbial relevant fouling in membrane bioreactors: Influencing factors, characterization and fouling control", Membranes, 2(3), 565-584.   DOI
40 Xiu-Fen, L., Yan-Jun, L., He, L., Zhao-Zhe, H., Guo-Cheng, D. and Jian, C. (2008), "Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor", Sep. Purif. Technol., 59(1), 26-33.   DOI
41 Yu, H., Wang, Z., Wu, Z. and Zhu, C. (2016), "Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: Performance, sludge characteristics and microbial community", Scientific Reports, 6, 1-10.   DOI
42 Zhu, L., Zhou, J., Lv, M., Yu, H., Zhao, H. and Xu, X. (2015), "Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE", Chemosphere, 121, 26-32.   DOI
43 Chang, I.S. and Lee, C.H. (1998), "Membrane filtration characteristics in membrane-coupled activated sludge systemthe effect of physiological states of activated sludge on membrane fouling", Desalination, 120(3), 221-233.   DOI
44 Ahmed, Z., Cho, J., Lim, B.R., Song, K.G. and Ahn, K.H. (2007), "Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor", J. Membr. Sci., 287(2), 211-218.   DOI
45 Al-Halbouni, D., Traber, J., Lyko, S., Wintgens, T., Melin, T., Tacke, D. and Hollender, J. (2008) "Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena", Water Res., 42(6-7), 1475-1488.   DOI
46 Berube, P.R. and Hall, E.R. (2000), "Effects of elevated operating temperatures on methanol removal kinetics from synthetic kraft pulp mill condensate using a membrane bioreactor", Water Res., 34(18), 4359-4366.   DOI
47 Chinnaraj, S., Jothilingam, M. and Jeganathan, S. (2014), "An evaluation of biofilm membrane bioreactor (Bf-Mbr)", IOSR-J. Mech. Civ. Eng., 11, 5-11.
48 Choudhary, M.K. (2005), "Landfill leachate treatment using a thermophilic membrane bioreactor" Ph.D. Dissertation, Asian Institute of Technology, Thailand.
49 Cho, J., Song, K.G. and Ahn, K.H. (2005a), "The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor: Unstirred batch cell test", Desalination, 183(1-3), 425-429.   DOI
50 Cho, J., Song, K.G., Yun, H., Ahn, K.H., Kim, J.Y. and Chung, T.H. (2005b), "Quantitative analysis of biological effect on membrane fouling in submerged membrane bioreactor", Water Sci. Technol., 51(6-7), 9-18.
51 Duncan, J., Bokhary, A., Fatehi, P., Kong, F., Lin, H. and Liao, B. (2017), "Thermophilic membrane bioreactors: A review", Bioresource Technol., 243, 1180-1193.   DOI
52 Cicek, N., Franco, J.P., Suidan, M.T., Urbain, V. and Manem, J. (1999), "Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds", Water Environ. Res., 71(1), 61-74.
53 Defrance, L., Jaffrin, M.Y., Gupta, B., Paullier, P. and Geaugey, W. (2000), "Contribution of various constituents of activated sludge to membrane bioreactor fouling", Bioresource Technol., 73(2), 105-112.   DOI
54 Drews, A. (2010), "Review: Membrane fouling in membrane bioreactors characterisation, contradictions, cause and cures", J. Membr. Sci., 363(1-2), 1-28.   DOI
55 Eriksson, L. and Alm, B. (1991), "Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties", Water Sci. Technol., 24(7), 21-28.
56 Gao, D., Liu, L., Liang, H. and Wu, W.M. (2011), "Aerobic granular sludge: Characterization, mechanism of granulation and application to wastewater treatment", Crit. Rev. Biotechnol., 31(2), 137-152.   DOI
57 Farizoglu, B. and Keskinler, B. (2006), "Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR)", J. Membr. Sci., 279(1-2), 578-587.   DOI
58 Farizoglu, B., Keskinler, B., Yildiz, E. and Nuhoglu, A. (2007), "Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR)", J. Hazard. Mater., 146(1-2), 399-407.   DOI
59 Frolund, B., Griebe, T. and Nielsen, P.H. (1995), "Enzymatic activity in the activated sludge floc matrix", Appl. Microbiol. Biotechnol., 43(4), 755-761.   DOI
60 Grelier, P., Rosenberger, S. and Tazi-Pain, A. (2006), "Influence of sludge retention time on membrane bioreactor hydraulic performance", Proceedings of the International Congress on Membranes and Membrane Processes (ICOM), Seoul, Korea, August.
61 Guibaud, G., Comte, S., Bordas, F., Dupuy, S. and Baudu, M. (2005), "Comparison of the complexation potential of extracellular polymeric substances (EPS) extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel", Chemosphere, 59(5), 629-638.   DOI
62 Hosseinzadeh, H., Mehrnia, M.R. and Mostoufi, N. (2013), "Experimental study and modeling of fouling in immersed membrane bioreactor operating in constant pressure filtration", Math. Prob. Eng., 2013, 1-7.