• Title/Summary/Keyword: Species Succession

Search Result 480, Processing Time 0.036 seconds

Ecological Research of Abies holophylla Forest at Wol-jong Temple(Mt. Odae, Kangwon-do) (오대산 월정사지역 전나무림의 생태학적 연구)

  • Nam, Seong-Yeol;Yoo, Seok-In;Park, Wan-Geun;Han, Sang-Sup
    • Journal of Forest and Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.69-81
    • /
    • 2000
  • The vegetation structure of Abies holophylla forest was analyzed to provide the information for conservation of Abies holophylla forest at Wol-jong Temple in Mt. Odae national park, southern Korea. The layer structure of Abies holophylla forest was consists of tree layer(2 species), subtree layer(20 species), shrub layer(46 species) and herb layer(87 species), The importance value of Abies holophylla was the highest one 34.09%, and those of Acer pseudo-sieboldianum. Acer barbinerve, Philadelphus schrenckii. Isodon excisus, Acer triflorum, Staphylea bumalda, Carex humilis, Isodon japonicus, Acer mono and Actinidia polygama were 23.07%, 14.44%, 10.72%, 8.49%, 7.80%, 7.65%, 6.79%, 5.76%, 5.47% and 5.41%, respectively, Especially, when predicting succession in Abies holophylla forest, such seedlings were not formed and succession was governed by competition of Acer species, Quercus species and Tilia species of subtree and shrub layer.

  • PDF

Effects of Elevated $CO_2$ and Temperature on Seedling Emergence of Herbs in a Japanese Temperate Grassland

  • Lee, Jae-Seok;Takehisa Oikawa;Shigeru Mariko;Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.423-429
    • /
    • 2000
  • To understand the effects of elevated $CO_2$ concentration and temperature on seedling emergence of seven herbaceous species, the seedling emergence was monitored between November 1997 and May 1998 using a temperature gradient chamber and a $CO_2$-temperature gradient chamber. Experiment was conducted under current ambient condition (Control plot), 2$^{\circ}C$-warmed condition with ambient $CO_2$ (T2 Plot), 4$^{\circ}C$-warmed condition with ambient $CO_2$ (T4 plot). and 4$^{\circ}C$-warmed condition with 1.8 fold of ambient $CO_2$ (CT4 plot). Species tested in this study were Digitaria adscendens, Echinochloa crus-galli, Panicum bisulcatum, Setaria viridis. Oenothera biennis, Andropogon virginicus, and Imperata cylindrica. Each species often dominates in the herbaceous stage of secondary succession in Japan. The mean seedling emergence times for all species were significantly increased to 23.6 and 32.2 d in the T2 and T4 plot compared to the Control plot, respectively. The most sensitive and insensitive species in seedling emergence time in T2 plot were O. biennis and D. adscendens, respectivel.y, and those in the T4 and CT4 plot were I. cylindrica and D. adscendens, E. crus-galli and A. virginicus, respectively. All experimental species showed no significant difference in the seedling emergence rate between treatments except for O. biennis and I. cylindrica. O. biennis showed a great decrease in the seedling emergence rate from 83.3% in the Control plot to 38.0%, 14.7%, and 29.3% in the T2, T4, and CT4 plot, respectively. Elevated $CO_2$ had very little effect on the seedling emergence. From these observations, it is expected that increased temperature would greatly advance the vegetative recovery time after disturbance through the advancement of seedling emergence time.

  • PDF

Seasonal Succession of Zooplankton Community in a Large Reservoir of Summer Monsoon Region (Lake Soyang) (몬순지역 대형댐(소양호)에서 동물플랑크톤 군집의 계절천이)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Seasonal succession of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. Annual precipitation was concentrated more than 70% between June and September and it showed remarkably that seasonal variation in water quality. Seasonal variation of water quality in Lake Soyang appeared to be more significant than annual variations, and the inflow of turbid water during the summer rainfall was the most important environmental factor. Zooplankton sepecies composition in Lake Soyang showed obvious tendency through two periods (May to June and August to October) every year. Small zooplankton (rotifer; Keratella cochlearis, Polyarthra vulgaris) dominated in spring and mesozooplankton such as copepods and crustaceans were dominant in summer and fall. Zooplankton biomass showed the maximum in September after monsoon rainfall, and chlorophyll showed a similar seasonal variation and it showed a high correlation (r=0.45). The increase of zooplankton biomass is considered to be a bottom-up effect due to the increase of primary producers and inflow of nutrients and organic matter from rainfall. In this study, we found that the variation of zooplankton community was affected by rainfall in monsoon climate region and inflow of turbid water was an important environmental factor, which influenced the water quality, zooplankton seasonal succession in Lake Soyang. It was also considered to be influenced by hydrological characteristics of lake and environment of watershed. In conclusion, seasonal succession of zooplankton species composition was the same as the PEG model. But seasonal succession of zooplankton biomass differed not only in the temperate lake but also in the monsoon region.

The Quantitative Ecological Analysis for Invading Vegetation on Forest Road Cut-slopes (임도(林道) 절토사면(切土砂面)의 침입(侵入) 식생(植生)에 대한 계량(計量) 생태학적(生態學的) 분석(分析))

  • Jinu, Guang-Ze;Kim, Ji Hong
    • Journal of Forest and Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • This study was carried out to examine the process of plant succession through vegetation invasion and to select appropriate endemic plant species for rapid stabilization and good visual effect on cut-slopes of forest roads. Establishing total of sixty $1m{\times}1m$ sample plots. fifteen for each forest road constructed in the year of '93 (six-year-old), '95(four-year-old), '97(two-year-old), and '98(one-year-old), the ecological attributes of invading vegetation on cut-slopes were analyzed. The results are summarized as follows: 1. The rate of vegetation coverage was highly associated with soil hardness and aspect of cut-slope. Higher rate of vegetation coverage was caused by larger number of invading plant species. 2. The dominant woody species were Rubus crataegifolius, Rhus chinensis, Lespedeza bicolor, Salix hulteni, Alnus hirsuta, and Pinus densiflora. The visual attractive for the fruit of Rubus crataegifolius and the autumn coloration of Rhus chinensis was noteworthy. The dominant herbaceous species were Youngia sonchifolia, Spodiopogon sibiricus, and Lysimachia clethroides in all study forest roads. Spring flower of Potentilla freyniana and Viola rossii: summer flower of Lysimachia clethroides, Commelina communis, Glycine soja. Persicaria sieboldi, and Oenothera odorata: and autumn flower of Artemisia stolonifera and Impatiens textori were abundant and remarkable. 3. The diversity index of woody species tended to be increased as years passed after construction, and that of herbaceous species were decreased. 4. The dominance of Th of dormancy form was early high in the first year of construction, getting decreased thereafter. And that of MM + M + N was increased as years passed after construction. but that of Ch+H+G+Th+HH was decreased. 5. The degrees of succession were estimated by 359, 111, 97, and 87 for the construction year of '93, '95, '97, and '98. respectively, increased as years passed after construction.

  • PDF

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Structure and Succession of Zooplankton Community in Several Artificial Lakes in the Han River System (한강 수계 주요 댐호에서의 동물플랑크톤 군집 구조와 천이)

  • You, Kyung-A;Park, Hae-Kyung;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.850-859
    • /
    • 2010
  • Structure and succession of zooplankton community studied by hydraulic and ecological characteristics targeting the five lakes in the Han river system from March to December 2008. Results separated by river-type lake and lake-type lake depending on the type of hydraulic, Paldang lake and Cheongpyeong lake were river-type lake, while Chungju lake, Hoengseong lake and Doam lake was lake-type lake. The Paldang lake was a eutrophic lake, zooplankton community density and species number were the most among the five lakes. Relative dominance of the rotifera was the largest and the yearly first dominant species was a small cladocera Bosmina longirostris. The Cheongpyeong lake was a mesotrophic-eutrophic lake, hydraulic characteristics and zooplankton community changes were similar the Paldang lake. Relative dominance of the cladocera was the largest and the yearly first dominant species was a small cladocera Bosmina longirostris. The Chungju lake was a oligotrophic-mesotrophic lake, zooplankton community density was the least among the five lakes. Relative dominance of the copepoda was the largest and the yearly first dominant species was a large cladocera Daphnia galeata. The Hoengseong lake was a oligotrophic-mesotrophic lake, relative dominance of the rotifera was the largest and the yearly first dominant species was a small cladocera Bosmina longirostris. The Doam lake was a mesotrophic-eutrophic lake, zooplankton community density showed dramatic difference at the investigation time. Relative dominance of the rotifera was the largest and the yearly first dominant species was the copepoda Nauplius.

Phytoplankton Community in Junam Reservoir by Pollution Sources, Loads and Water Quality (주남저수지 유역의 오염원과 수질변동에 따른 식물플랑크톤 군집)

  • Lee, Hae-Jin;Seo, Jung-Kwan;Jeong, Hyun-Ki;Tak, Bo-Mi;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1445-1456
    • /
    • 2010
  • This study presented seasonal changes of the phytoplankton community in Junam reservoir by pollution and water quality of the lake. The water storage of the reservoir is 5.3 million ton, most of which are being utilized for agricultural, industrial and residential purposes. The annual precipitation during the investigation period was 1,868.9 mm, increasing by 20% from the average annual level of 1,506.7 mm in 2009. The annual average water storage was 57.3%. It decreased during agricultural season and then increased again after monsoon rainfall. The loads of BOD were $3,799kgday^{-1}$, and 81% of them came from livestock and household. The TN and TP loads were $1,164kgday^{-1}$ and $170kgday^{-1}$, respectively, and 76% of them came from livestock. We assessed water quality of the Junam reservoir using 17 variables. According to the result, the reservoir met the fourth grade, meaning slightly bad, because of high concentration of COD, SS and chlorophyll-a. Eutrophication assessment was conducted by revised Carlson's Index (TSIm, Aizaki), and it was found that the entire lake was eutrophicated with high chlorophyll-a concentration all through the year, except during February to April and in July. A total of 76 phytoplankton species were identified from the samples. Among them, the largest number of species were Chlorophyceae with 33 species(43.4%), followed by Bacilliophyceae with 27 species(35.5%), Cyanophyceae with 8 species(10.5%), and Cryptophyceae with species(10.5%). The total cell number of phytoplankton was the highest in October(7,884 cells $mL^{-1}$) among Cyanophyceae and Bacilliophyceae. The seasonal succession of Chlorophyceae (Chlamydomonas spp.), Cyanophyceae(Microcystis aeruginosa) and Cryptophyceae(Rhodomonas spp.) was observed during January to May, July to September and October to December respectively.

Mid-term (2009-2019) demographic dynamics of young beech forest in Albongbunji Basin, Ulleungdo, South Korea

  • Cho, Yong-Chan;Sim, Hyung Seok;Jung, Songhie;Kim, Han-Gyeoul;Kim, Jun-Soo;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.241-255
    • /
    • 2020
  • Background: The stem exclusion stage is a stage of forest development that is important for understanding the subsequent understory reinitiation stage and maturation stage during which horizontal heterogeneity is formed. Over the past 11 years (2009-2019), we observed a deciduous broad-leaved forest in the Albongbunji Basin in Ulleungdo, South Korea in its stem exclusion stage, where Fagus engleriana (Engler's beech) is the dominant species, thereby analyzing the changes in the structure (density and size distributions), function (biomass and species richness), and demographics. Results: The mean stem density data presented a bell-shaped curve with initially increasing, peaking, and subsequently decreasing trends in stem density over time, and the mean biomass data showed a sigmoidal pattern indicating that the rate of biomass accumulation slowed over time. Changes in the density and biomass of Fagus engleriana showed a similar trend to the changes in density and biomass at the community level, which is indicative of the strong influence of this species on the changing patterns of forest structure and function. Around 2015, a shift between recruitment and mortality rates was observed. Deterministic processes were the predominant cause of tree mortality in our study; however, soil deposition that began in 2017 in some of the quadrats resulted in an increase in the contribution of stochastic processes (15% in 2019) to tree mortality. The development of horizontal heterogeneity was observed in forest gaps. Conclusions: Our observations showed a dramatic shift between the recruitment and mortality rates in the stem exclusion stage, and that disturbance increases the uncertainty in forest development increases. The minor changes in species composition are likely linked to regional species pool and the limited role of the life-history strategy of species such as shade tolerance and habitat affinity. Our midterm records of ecological succession exhibited detailed demographic dynamics and contributed to the improvement of an ecological perspective in the stem exclusion stage.

Characteristics of Phytoplankton Succession Based on the Functional Group in the Enclosed Culture System (대형 배양장치에서 기능그룹에 기초한 식물플랑크톤 천이 특성)

  • Lee, Kyung-Lak;Noh, Seongyu;Lee, Jaeyoon;Yoon, Sungae;Lee, Jaehak;Shin, Yuna;Lee, Su-Woong;Rhew, Doughee;Lee, Jaekwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • The present study was conducted from August to December 2016 in a cylindrical water tank with a diameter of 1 m, a height of 4 m and a capacity of 3,000 L. The field water and sediment from the Nakdong River were also sampled for the experimental culture (field water+sediment) and control culture (field water), respectively. In this study, we aimed to investigate phytoplankton succession pattern using the phytoplankton functional group in the enclosed culture system. A total of 50 species in 27 genera including Chlorophyceae (30 species), Bacillariophyceae (11 species), Cyanophyceae (7 species), and Cryptophyceae (2 species) were identified in the experimental and control culture systems. A total of 19 phytoplankton functional groups (PFGs) were identified, and these groups include B, C, D, F, G, H1, J, K, Lo, M, MP, N, P, S1, $T_B$, $W_0$, X1, X2 and Y. In particular, $W_0$, J and M groups exhibited the marked succession in the experimental culture system with higher biovolumes compared to those of the control culture system, which may be related to the internal cycling of nutrients by sediment in the experimental culture system. The principal component analyses demonstrated that succession patterns in PFG were associated with the main environmental factors such as nutrients(N, P), water temperature and light intensity in two culture systems. In conclusion, the present study showed the potential applicability of the functional group for understanding the adaptation strategies and ecological traits of the phytoplankton succession in the water bodies of Korea.

Succession and Appearence Species of Marine Benthic Diatoms on Wave Plates of Indoor Culture Tank (Short-term Observation) (실내 수조에 설치한 파판에서의 해양 부착 규조의 단기간 천이 및 출현종)

  • Wi Chong Hwan;Kim Hyeung Sin;Lee Sung Ju;Jung Min Min;Kim Tae Ik;Kim Byoung Hak;Huh Young Baek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.476-479
    • /
    • 2002
  • We observed the succession and appearence species of the marine benthic diatoms for the effective seed production of shellfish culture on wave plates in indoor mass culture tanks. Every five days, the existence species and densitiy of diatoms were counted during the 20 culture days. Experimental conditions were 8.5 $\pm$ 0.3$^{\circ}C$ of water temperature, 1.0250$\~$1.0260 of specific gravity, 2,200$\~$13,000 lux of light intensity. The total density of appearence species was rapidly increased with the lapse of time. However, the number of appearence species decreased on the 20th day. The diatoms observed were 10 species; Navicula sp. of, viridula, Cylindrotheca closterium, Licmophora sp., Pleurosisma normnii, Bacillaria Paradoxa Asterionella glacialis, Stephanopuis sp. cf, turris, Entomoneis sp., Odontella aurita and Cocconeis sp, cf, scutellum. Of them, Navicula sp, of, viridula was most dominant throughout the experiment.